925 research outputs found

    Vehicle-Rear: A New Dataset to Explore Feature Fusion for Vehicle Identification Using Convolutional Neural Networks

    Full text link
    This work addresses the problem of vehicle identification through non-overlapping cameras. As our main contribution, we introduce a novel dataset for vehicle identification, called Vehicle-Rear, that contains more than three hours of high-resolution videos, with accurate information about the make, model, color and year of nearly 3,000 vehicles, in addition to the position and identification of their license plates. To explore our dataset we design a two-stream CNN that simultaneously uses two of the most distinctive and persistent features available: the vehicle's appearance and its license plate. This is an attempt to tackle a major problem: false alarms caused by vehicles with similar designs or by very close license plate identifiers. In the first network stream, shape similarities are identified by a Siamese CNN that uses a pair of low-resolution vehicle patches recorded by two different cameras. In the second stream, we use a CNN for OCR to extract textual information, confidence scores, and string similarities from a pair of high-resolution license plate patches. Then, features from both streams are merged by a sequence of fully connected layers for decision. In our experiments, we compared the two-stream network against several well-known CNN architectures using single or multiple vehicle features. The architectures, trained models, and dataset are publicly available at https://github.com/icarofua/vehicle-rear

    HPMC:A multi-target tracking algorithm for the IoT

    Get PDF

    Object Detection Using LiDAR and Camera Fusion in Off-road Conditions

    Get PDF
    Seoses hüppelise huvi kasvuga autonoomsete sõidukite vastu viimastel aastatel on suurenenud ka vajadus täpsemate ja töökindlamate objektituvastuse meetodite järele. Kuigi tänu konvolutsioonilistele närvivõrkudele on palju edu saavutatud 2D objektituvastuses, siis võrreldavate tulemuste saavutamine 3D maailmas on seni jäänud unistuseks. Põhjuseks on mitmesugused probleemid eri modaalsusega sensorite andmevoogude ühitamisel, samuti on 3D maailmas märgendatud andmestike loomine aeganõudvam ja kallim. Sõltumata sellest, kas kasutame objektide kauguse hindamiseks stereo kaamerat või lidarit, kaasnevad andmevoogude ühitamisega ajastusprobleemid, mis raskendavad selliste lahenduste kasutamist reaalajas. Lisaks on enamus olemasolevaid lahendusi eelkõige välja töötatud ja testitud linnakeskkonnas liikumiseks.Töös pakutakse välja meetod 3D objektituvastuseks, mis põhineb 2D objektituvastuse tulemuste (objekte ümbritsevad kastid või segmenteerimise maskid) projitseerimisel 3D punktipilve ning saadud punktipilve filtreerimisel klasterdamismeetoditega. Tulemusi võrreldakse lihtsa termokaamera piltide filtreerimisel põhineva lahendusega. Täiendavalt viiakse läbi põhjalikud eksperimendid parimate algoritmi parameetrite leidmiseks objektituvastuseks maastikul, saavutamaks suurimat võimalikku täpsust reaalajas.Since the boom in the industry of autonomous vehicles, the need for preciseenvironment perception and robust object detection methods has grown. While we are making progress with state-of-the-art in 2D object detection with approaches such as convolutional neural networks, the challenge remains in efficiently achieving the same level of performance in 3D. The reasons for this include limitations of fusing multi-modal data and the cost of labelling different modalities for training such networks. Whether we use a stereo camera to perceive scene’s ranging information or use time of flight ranging sensors such as LiDAR, ​ the existing pipelines for object detection in point clouds have certain bottlenecks and latency issues which tend to affect the accuracy of detection in real time speed. Moreover, ​ these existing methods are primarily implemented and tested over urban cityscapes.This thesis presents a fusion based approach for detecting objects in 3D by projecting the proposed 2D regions of interest (object’s bounding boxes) or masks (semantically segmented images) to point clouds and applies outlier filtering techniques to filter out target object points in projected regions of interest. Additionally, we compare it with human detection using thermal image thresholding and filtering. Lastly, we performed rigorous benchmarks over the off-road environments to identify potential bottlenecks and to find a combination of pipeline parameters that can maximize the accuracy and performance of real-time object detection in 3D point clouds

    An Evaluation of Deep Learning-Based Object Identification

    Get PDF
    Identification of instances of semantic objects of a particular class, which has been heavily incorporated in people's lives through applications like autonomous driving and security monitoring, is one of the most crucial and challenging areas of computer vision. Recent developments in deep learning networks for detection have improved object detector accuracy. To provide a detailed review of the current state of object detection pipelines, we begin by analyzing the methodologies employed by classical detection models and providing the benchmark datasets used in this study. After that, we'll have a look at the one- and two-stage detectors in detail, before concluding with a summary of several object detection approaches. In addition, we provide a list of both old and new apps. It's not just a single branch of object detection that is examined. Finally, we look at how to utilize various object detection algorithms to create a system that is both efficient and effective. and identify a number of emerging patterns in order to better understand the using the most recent algorithms and doing more study
    corecore