688 research outputs found

    Recent Advances in mmWave-Radar-Based Sensing, Its Applications, and Machine Learning Techniques: A Review

    Get PDF
    Human gesture detection, obstacle detection, collision avoidance, parking aids, automotive driving, medical, meteorological, industrial, agriculture, defense, space, and other relevant fields have all benefited from recent advancements in mmWave radar sensor technology. A mmWave radar has several advantages that set it apart from other types of sensors. A mmWave radar can operate in bright, dazzling, or no-light conditions. A mmWave radar has better antenna miniaturization than other traditional radars, and it has better range resolution. However, as more data sets have been made available, there has been a significant increase in the potential for incorporating radar data into different machine learning methods for various applications. This review focuses on key performance metrics in mmWave-radar-based sensing, detailed applications, and machine learning techniques used with mmWave radar for a variety of tasks. This article starts out with a discussion of the various working bands of mmWave radars, then moves on to various types of mmWave radars and their key specifications, mmWave radar data interpretation, vast applications in various domains, and, in the end, a discussion of machine learning algorithms applied with radar data for various applications. Our review serves as a practical reference for beginners developing mmWave-radar-based applications by utilizing machine learning techniques.publishedVersio

    Neural Architectural Nonlinear Pre-Processing for mmWave Radar-based Human Gesture Perception

    Full text link
    In modern on-driving computing environments, many sensors are used for context-aware applications. This paper utilizes two deep learning models, U-Net and EfficientNet, which consist of a convolutional neural network (CNN), to detect hand gestures and remove noise in the Range Doppler Map image that was measured through a millimeter-wave (mmWave) radar. To improve the performance of classification, accurate pre-processing algorithms are essential. Therefore, a novel pre-processing approach to denoise images before entering the first deep learning model stage increases the accuracy of classification. Thus, this paper proposes a deep neural network based high-performance nonlinear pre-processing method.Comment: 4 pages, 7 figure

    Towards Domain-Independent and Real-Time Gesture Recognition Using mmWave Signal

    Full text link
    Human gesture recognition using millimeter wave (mmWave) signals provides attractive applications including smart home and in-car interface. While existing works achieve promising performance under controlled settings, practical applications are still limited due to the need of intensive data collection, extra training efforts when adapting to new domains (i.e. environments, persons and locations) and poor performance for real-time recognition. In this paper, we propose DI-Gesture, a domain-independent and real-time mmWave gesture recognition system. Specifically, we first derive the signal variation corresponding to human gestures with spatial-temporal processing. To enhance the robustness of the system and reduce data collecting efforts, we design a data augmentation framework based on the correlation between signal patterns and gesture variations. Furthermore, we propose a dynamic window mechanism to perform gesture segmentation automatically and accurately, thus enable real-time recognition. Finally, we build a lightweight neural network to extract spatial-temporal information from the data for gesture classification. Extensive experimental results show DI-Gesture achieves an average accuracy of 97.92%, 99.18% and 98.76% for new users, environments and locations, respectively. In real-time scenario, the accuracy of DI-Gesutre reaches over 97% with average inference time of 2.87ms, which demonstrates the superior robustness and effectiveness of our system.Comment: The paper is submitted to the journal of IEEE Transactions on Mobile Computing. And it is still under revie

    Emerging Approaches for THz Array Imaging: A Tutorial Review and Software Tool

    Full text link
    Accelerated by the increasing attention drawn by 5G, 6G, and Internet of Things applications, communication and sensing technologies have rapidly evolved from millimeter-wave (mmWave) to terahertz (THz) in recent years. Enabled by significant advancements in electromagnetic (EM) hardware, mmWave and THz frequency regimes spanning 30 GHz to 300 GHz and 300 GHz to 3000 GHz, respectively, can be employed for a host of applications. The main feature of THz systems is high-bandwidth transmission, enabling ultra-high-resolution imaging and high-throughput communications; however, challenges in both the hardware and algorithmic arenas remain for the ubiquitous adoption of THz technology. Spectra comprising mmWave and THz frequencies are well-suited for synthetic aperture radar (SAR) imaging at sub-millimeter resolutions for a wide spectrum of tasks like material characterization and nondestructive testing (NDT). This article provides a tutorial review of systems and algorithms for THz SAR in the near-field with an emphasis on emerging algorithms that combine signal processing and machine learning techniques. As part of this study, an overview of classical and data-driven THz SAR algorithms is provided, focusing on object detection for security applications and SAR image super-resolution. We also discuss relevant issues, challenges, and future research directions for emerging algorithms and THz SAR, including standardization of system and algorithm benchmarking, adoption of state-of-the-art deep learning techniques, signal processing-optimized machine learning, and hybrid data-driven signal processing algorithms...Comment: Submitted to Proceedings of IEE

    Real-Time Radar-Based Gesture Detection and Recognition Built in an Edge-Computing Platform

    Full text link
    In this paper, a real-time signal processing frame-work based on a 60 GHz frequency-modulated continuous wave (FMCW) radar system to recognize gestures is proposed. In order to improve the robustness of the radar-based gesture recognition system, the proposed framework extracts a comprehensive hand profile, including range, Doppler, azimuth and elevation, over multiple measurement-cycles and encodes them into a feature cube. Rather than feeding the range-Doppler spectrum sequence into a deep convolutional neural network (CNN) connected with recurrent neural networks, the proposed framework takes the aforementioned feature cube as input of a shallow CNN for gesture recognition to reduce the computational complexity. In addition, we develop a hand activity detection (HAD) algorithm to automatize the detection of gestures in real-time case. The proposed HAD can capture the time-stamp at which a gesture finishes and feeds the hand profile of all the relevant measurement-cycles before this time-stamp into the CNN with low latency. Since the proposed framework is able to detect and classify gestures at limited computational cost, it could be deployed in an edge-computing platform for real-time applications, whose performance is notedly inferior to a state-of-the-art personal computer. The experimental results show that the proposed framework has the capability of classifying 12 gestures in real-time with a high F1-score.Comment: Accepted for publication in IEEE Sensors Journal. A video is available on https://youtu.be/IR5NnZvZBL

    Multi-User Gesture Recognition with Radar Technology

    Get PDF
    The aim of this work is the development of a Radar system for consumer applications. It is capable of tracking multiple people in a room and offers a touchless human-machine interface for purposes that range from entertainment to hygiene
    • …
    corecore