2 research outputs found

    Hybrid Satellite-Terrestrial Communication Networks for the Maritime Internet of Things: Key Technologies, Opportunities, and Challenges

    Get PDF
    With the rapid development of marine activities, there has been an increasing number of maritime mobile terminals, as well as a growing demand for high-speed and ultra-reliable maritime communications to keep them connected. Traditionally, the maritime Internet of Things (IoT) is enabled by maritime satellites. However, satellites are seriously restricted by their high latency and relatively low data rate. As an alternative, shore & island-based base stations (BSs) can be built to extend the coverage of terrestrial networks using fourth-generation (4G), fifth-generation (5G), and beyond 5G services. Unmanned aerial vehicles can also be exploited to serve as aerial maritime BSs. Despite of all these approaches, there are still open issues for an efficient maritime communication network (MCN). For example, due to the complicated electromagnetic propagation environment, the limited geometrically available BS sites, and rigorous service demands from mission-critical applications, conventional communication and networking theories and methods should be tailored for maritime scenarios. Towards this end, we provide a survey on the demand for maritime communications, the state-of-the-art MCNs, and key technologies for enhancing transmission efficiency, extending network coverage, and provisioning maritime-specific services. Future challenges in developing an environment-aware, service-driven, and integrated satellite-air-ground MCN to be smart enough to utilize external auxiliary information, e.g., sea state and atmosphere conditions, are also discussed

    Technologies for a FAIRer use of Ocean Best Practices

    Get PDF
    The publication and dissemination of best practices in ocean observing is pivotal for multiple aspects of modern marine science, including cross-disciplinary interoperability, improved reproducibility of observations and analyses, and training of new practitioners. Often, best practices are not published in a scientific journal and may not even be formally documented, residing solely within the minds of individuals who pass the information along through direct instruction. Naturally, documenting best practices is essential to accelerate high-quality marine science; however, documentation in a drawer has little impact. To enhance the application and development of best practices, we must leverage contemporary document handling technologies to make best practices discoverable, accessible, and interlinked, echoing the logic of the FAIR data principles [1]
    corecore