8,378 research outputs found

    Frequency ratios of Sr, Yb and Hg based optical lattice clocks and their applications

    Get PDF
    This article describes the recent progress of optical lattice clocks with neutral strontium (87^{87}Sr), ytterbium (171^{171}Yb) and mercury (199^{199}Hg) atoms. In particular, we present frequency comparison between the clocks locally via an optical frequency comb and between two Sr clocks at remote sites using a phase-stabilized fibre link. We first review cryogenic Sr optical lattice clocks that reduce the room-temperature blackbody radiation shift by two orders of magnitude and serve as a reference in the following clock comparisons. Similar physical properties of Sr and Yb atoms, such as transition wavelengths and vapour pressure, have allowed our development of a compatible clock for both species. A cryogenic Yb clock is evaluated by referencing a Sr clock. We also report on a Hg clock, which shows one order of magnitude less sensitivity to blackbody radiation, while its large nuclear charge makes the clock sensitive to the variation of fine-structure constant. Connecting all three types of clocks by an optical frequency comb, the ratios of the clock frequencies are determined with uncertainties smaller than possible through absolute frequency measurements. Finally, we describe a synchronous frequency comparison between two Sr-based remote clocks over a distance of 15 km between RIKEN and the University of Tokyo, as a step towards relativistic geodesy.Comment: 11 pages, 5 figures, invited review article in Comptes Rendus de Physique 201

    Requirements Study for System Implementation of an Atmospheric Laser Propagation Experiment Program, Volume II

    Get PDF
    Program planning, ground support and airborne equipment for laser space communication syste

    Feasibility study of the application of existing techniques to remotely monitor hydrochloric acid in the atmosphere

    Get PDF
    A critical evaluation of existing optical remote sensors for HCl vapor detection in solid propellant rocket plumes is presented. The P branch of the fundamental vibration-rotation band was selected as the most promising spectral feature to sense. A computation of transmittance for HCl vapor, an estimation of interferent spectra, the application of these spectra to computer modelled remote sensors, and a trade-off study for instrument recommendation are also included

    Submillimeter Polarimetry with PolKa, a reflection-type modulator for the APEX telescope

    Get PDF
    Imaging polarimetry is an important tool for the study of cosmic magnetic fields. In our Galaxy, polarization levels of a few up to ∼\sim10\% are measured in the submillimeter dust emission from molecular clouds and in the synchrotron emission from supernova remnants. Only few techniques exist to image the distribution of polarization angles, as a means of tracing the plane-of-sky projection of the magnetic field orientation. At submillimeter wavelengths, polarization is either measured as the differential total power of polarization-sensitive bolometer elements, or by modulating the polarization of the signal. Bolometer arrays such as LABOCA at the APEX telescope are used to observe the continuum emission from fields as large as \sim0\fdg2 in diameter. %Here we present the results from the commissioning of PolKa, a polarimeter for Here we present PolKa, a polarimeter for LABOCA with a reflection-type waveplate of at least 90\% efficiency. The modulation efficiency depends mainly on the sampling and on the angular velocity of the waveplate. For the data analysis the concept of generalized synchronous demodulation is introduced. The instrumental polarization towards a point source is at the level of ∼0.1\sim0.1\%, increasing to a few percent at the −10-10db contour of the main beam. A method to correct for its effect in observations of extended sources is presented. Our map of the polarized synchrotron emission from the Crab nebula is in agreement with structures observed at radio and optical wavelengths. The linear polarization measured in OMC1 agrees with results from previous studies, while the high sensitivity of LABOCA enables us to also map the polarized emission of the Orion Bar, a prototypical photon-dominated region

    Active microwave sensing of the atmosphere, chapter 4

    Get PDF
    The use of active microwave systems to study atmospheric phenomena is studied. Atmospheric pollution, weather prediction, climate and weather modification, weather danger and disaster warning, and atmospheric processes and interactions are covered

    Optical Fiber Grating based Sensors

    Get PDF

    Analysis of Meteorological Satellite location and data collection system concepts

    Get PDF
    A satellite system that employs a spaceborne RF interferometer to determine the location and velocity of data collection platforms attached to meteorological balloons is proposed. This meteorological advanced location and data collection system (MALDCS) is intended to fly aboard a low polar orbiting satellite. The flight instrument configuration includes antennas supported on long deployable booms. The platform location and velocity estimation errors introduced by the dynamic and thermal behavior of the antenna booms and the effects of the presence of the booms on the performance of the spacecraft's attitude control system, and the control system design considerations critical to stable operations are examined. The physical parameters of the Astromast type of deployable boom were used in the dynamic and thermal boom analysis, and the TIROS N system was assumed for the attitude control analysis. Velocity estimation error versus boom length was determined. There was an optimum, minimum error, antenna separation distance. A description of the proposed MALDCS system and a discussion of ambiguity resolution are included
    • …
    corecore