203 research outputs found

    Sparse Kneser graphs are Hamiltonian

    Get PDF
    For integers k1k\geq 1 and n2k+1n\geq 2k+1, the Kneser graph K(n,k)K(n,k) is the graph whose vertices are the kk-element subsets of {1,,n}\{1,\ldots,n\} and whose edges connect pairs of subsets that are disjoint. The Kneser graphs of the form K(2k+1,k)K(2k+1,k) are also known as the odd graphs. We settle an old problem due to Meredith, Lloyd, and Biggs from the 1970s, proving that for every k3k\geq 3, the odd graph K(2k+1,k)K(2k+1,k) has a Hamilton cycle. This and a known conditional result due to Johnson imply that all Kneser graphs of the form K(2k+2a,k)K(2k+2^a,k) with k3k\geq 3 and a0a\geq 0 have a Hamilton cycle. We also prove that K(2k+1,k)K(2k+1,k) has at least 22k62^{2^{k-6}} distinct Hamilton cycles for k6k\geq 6. Our proofs are based on a reduction of the Hamiltonicity problem in the odd graph to the problem of finding a spanning tree in a suitably defined hypergraph on Dyck words

    Vertex covering with monochromatic pieces of few colours

    Full text link
    In 1995, Erd\H{o}s and Gy\'arf\'as proved that in every 22-colouring of the edges of KnK_n, there is a vertex cover by 2n2\sqrt{n} monochromatic paths of the same colour, which is optimal up to a constant factor. The main goal of this paper is to study the natural multi-colour generalization of this problem: given two positive integers r,sr,s, what is the smallest number pcr,s(Kn)\text{pc}_{r,s}(K_n) such that in every colouring of the edges of KnK_n with rr colours, there exists a vertex cover of KnK_n by pcr,s(Kn)\text{pc}_{r,s}(K_n) monochromatic paths using altogether at most ss different colours? For fixed integers r>sr>s and as nn\to\infty, we prove that pcr,s(Kn)=Θ(n1/χ)\text{pc}_{r,s}(K_n) = \Theta(n^{1/\chi}), where χ=max{1,2+2sr}\chi=\max{\{1,2+2s-r\}} is the chromatic number of the Kneser gr aph KG(r,rs)\text{KG}(r,r-s). More generally, if one replaces KnK_n by an arbitrary nn-vertex graph with fixed independence number α\alpha, then we have pcr,s(G)=O(n1/χ)\text{pc}_{r,s}(G) = O(n^{1/\chi}), where this time around χ\chi is the chromatic number of the Kneser hypergraph KG(α+1)(r,rs)\text{KG}^{(\alpha+1)}(r,r-s). This result is tight in the sense that there exist graphs with independence number α\alpha for which pcr,s(G)=Ω(n1/χ)\text{pc}_{r,s}(G) = \Omega(n^{1/\chi}). This is in sharp contrast to the case r=sr=s, where it follows from a result of S\'ark\"ozy (2012) that pcr,r(G)\text{pc}_{r,r}(G) depends only on rr and α\alpha, but not on the number of vertices. We obtain similar results for the situation where instead of using paths, one wants to cover a graph with bounded independence number by monochromatic cycles, or a complete graph by monochromatic dd-regular graphs

    Sparse Kneser graphs are Hamiltonian

    Get PDF
    For integers k≥1 and n≥2k+1, the Kneser graph K(n,k) is the graph whose vertices are the k-element subsets of {1,…,n} and whose edges connect pairs of subsets that are disjoint. The Kneser graphs of the form K(2k+1,k) are also known as the odd graphs. We settle an old problem due to Meredith, Lloyd, and Biggs from the 1970s, proving that for every k≥3, the odd graph K(2k+1,k) has a Hamilton cycle. This and a known conditional result due to Johnson imply that all Kneser graphs of the form K(2k+2a,k) with k≥3 and a≥0 have a Hamilton cycle. We also prove that K(2k+1,k) has at least 22k−6 distinct Hamilton cycles for k≥6. Our proofs are based on a reduction of the Hamiltonicity problem in the odd graph to the problem of finding a spanning tree in a suitably defined hypergraph on Dyck words

    Bipartite Kneser graphs are Hamiltonian

    Get PDF
    For integers k1k\geq 1 and n2k+1n\geq 2k+1 the Kneser graph K(n,k)K(n,k) has as vertices all kk-element subsets of [n]:={1,2,,n}[n]:=\{1,2,\ldots,n\} and an edge between any two vertices (=sets) that are disjoint. The bipartite Kneser graph H(n,k)H(n,k) has as vertices all kk-element and (nk)(n-k)-element subsets of [n][n] and an edge between any two vertices where one is a subset of the other. It has long been conjectured that all Kneser graphs and bipartite Kneser graphs except the Petersen graph K(5,2)K(5,2) have a Hamilton cycle. The main contribution of this paper is proving this conjecture for bipartite Kneser graphs H(n,k)H(n,k). We also establish the existence of cycles that visit almost all vertices in Kneser graphs K(n,k)K(n,k) when n=2k+o(k)n=2k+o(k), generalizing and improving upon previous results on this problem
    corecore