

warwick.ac.uk/lib-publications

Manuscript version: Author’s Accepted Manuscript
The version presented in WRAP is the author’s accepted manuscript and may differ from the
published version or Version of Record.

Persistent WRAP URL:
http://wrap.warwick.ac.uk/118876

How to cite:
Please refer to published version for the most recent bibliographic citation information.
If a published version is known of, the repository item page linked to above, will contain
details on accessing it.

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions.

Copyright © and all moral rights to the version of the paper presented here belong to the
individual author(s) and/or other copyright owners. To the extent reasonable and
practicable the material made available in WRAP has been checked for eligibility before
being made available.

Copies of full items can be used for personal research or study, educational, or not-for-profit
purposes without prior permission or charge. Provided that the authors, title and full
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata
page and the content is not changed in any way.

Publisher’s statement:
Please refer to the repository item page, publisher’s statement section, for further
information.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/217409042?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/118876
mailto:wrap@warwick.ac.uk

Sparse Kneser graphs are Hamiltonian

Torsten Mütze
Institut für Mathematik
Technische Universität Berlin
10623 Berlin, Germany
muetze@math.tu-berlin.de

Jerri Nummenpalo
Department of Computer Science
ETH Zürich
8092 Zürich, Switzerland
njerri@inf.ethz.ch

Bartosz Walczak
Department of Theoretical Computer Science
Faculty of Mathematics and Computer Science
Jagiellonian University
30-348 Kraków, Poland
walczak@tcs.uj.edu.pl

Abstract. For integers k ≥ 1 and n ≥ 2k + 1, the Kneser graph K(n, k) is
the graph whose vertices are the k-element subsets of {1, . . . , n} and whose
edges connect pairs of subsets that are disjoint. The Kneser graphs of the form
K(2k + 1, k) are also known as the odd graphs. We settle an old problem due to
Meredith, Lloyd, and Biggs from the 1970s, proving that for every k ≥ 3, the
odd graph K(2k + 1, k) has a Hamilton cycle. This and a known conditional
result due to Johnson imply that all Kneser graphs of the form K(2k + 2a, k)
with k ≥ 3 and a ≥ 0 have a Hamilton cycle. We also prove that K(2k + 1, k)
has at least 22k−6 distinct Hamilton cycles for k ≥ 6. Our proofs are based on
a reduction of the Hamiltonicity problem in the odd graph to the problem of
finding a spanning tree in a suitably defined hypergraph on Dyck words.

Keywords: Hamilton cycle, Kneser graph, odd graph, vertex-transitive graph

1. Introduction

The question whether a given graph has a Hamilton cycle is one of the oldest and most fundamental
problems in graph theory and computer science, shown to be NP-complete in Karp’s seminal paper
[Kar72]. The problem originates from the 19th-century “Hamilton puzzle”, which involves finding a
Hamilton cycle along the edges of a dodecahedron. Efficient methods of generating Hamilton cycles
in highly symmetric graphs (in particular, so-called Gray codes) are particularly important from
the point of view of practical applications [Sav97, Knu11]. Still, for various natural and extensively
studied families of graphs, it is conjectured that a Hamilton cycle always exists, but finding one is a
notoriously hard problem; see for instance [MN17, SW17]. In this paper, we focus on a well-known
instance of this phenomenon—the so-called Kneser graphs.

1.1. Kneser graphs. For any two integers k ≥ 1 and n ≥ 2k + 1, the Kneser graph K(n, k) has
the k-element subsets of [n] := {1, . . . , n} as vertices and the pairs of those subsets that are disjoint
as edges. These graphs were introduced by Lovász in his celebrated proof of Kneser’s conjecture
[Lov78]. The proof uses topological methods to show that the chromatic number of K(n, k) is equal
to n − 2k + 2. Lovász’s result initiated an exciting line of research [Bár78, Gre02, Zie02, Mat04]
and gave rise to the nowadays flourishing field of topological combinatorics. Apart from the above,
Kneser graphs have many other interesting properties. For instance, the maximum size of an
independent set in K(n, k) is equal to

(n−1
k−1
)
, by the famous Erdős-Ko-Rado theorem [EKR61].

1.2. Hamilton cycles in Kneser graphs. As indicated before, it has long been conjectured that
Kneser graphs have Hamilton cycles. Apart from one obvious exception, namely the Petersen graph
K(5, 2) shown in Figure 1, no other negative instances are apparent. Observe that Kneser graphs
are vertex-transitive, that is, they look the same from the point of view of any vertex. This makes
them an excellent test case for a famous and vastly more general conjecture due to Lovász [Lov70],
which asserts that any connected and vertex-transitive graph has a Hamilton cycle, apart from the
Petersen graph and four other exceptional instances.

We proceed by giving an account of the long history of finding Hamilton cycles in Kneser graphs.
The degree of every vertex in K(n, k) is

(n−k
k

)
, so for fixed k, increasing n also increases the vertex

degrees, which intuitively makes the task of finding a Hamilton cycle easier. The density is also
witnessed by cliques of size c ≥ 3, which are present for n ≥ ck and absent for n < ck. The sparsest
case, for which finding a Hamilton cycle is intuitively hardest, is when n = 2k+1. The corresponding
graphs Ok := K(2k + 1, k), for k ≥ 1, are known as odd graphs. They include the Petersen graph
O2 = K(5, 2). The odd graphs O2 and O3 are illustrated in Figures 1 and 2, respectively. Note
that all vertices in the odd graph Ok have degree k + 1, which is only logarithmic in the number of
vertices. The conjecture that the odd graph Ok has a Hamilton cycle for every k ≥ 3, originated
in the 1970s, in papers by Meredith and Lloyd [ML72, ML73] and by Biggs [Big79]. A stronger
version of the conjecture asserts that Ok even has b(k+ 1)/2c edge-disjoint Hamilton cycles. Already
Balaban [Bal72] exhibited a Hamilton cycle for the cases k = 3 and k = 4, and Meredith and Lloyd
described one for k = 5 and k = 6. Later, Mather [Mat76] also solved the case k = 7. With the
help of computers, Shields and Savage [SS04] found Hamilton cycles in Ok for all values of k up to
13. They also found Hamilton cycles in K(n, k) for all n ≤ 27 and all k ≥ 1 with n ≥ 2k + 1.

There is a long line of research devoted to proving that sufficiently dense Kneser graphs have
a Hamilton cycle. Heinrich and Wallis [HW78] showed that K(n, k) has a Hamilton cycle if
n ≥ 2k + k/(k

√
2 − 1) = (1 + o(1))k2/ ln 2. This was improved by B. Chen and Lih [CL87],

whose results imply that K(n, k) has a Hamilton cycle if n ≥ (1 + o(1))k2/ log k, see [CI96]. In
another breakthrough, Y. Chen [Che00] showed that K(n, k) is Hamiltonian when n ≥ 3k. A
particularly nice and clean proof for the cases where n = ck, c ∈ {3, 4, . . .}, was obtained by
Y. Chen and Füredi [CF02]. Their proof uses Baranyai’s well-known partition theorem for complete

1

{1, 4}

{3, 5}

{2, 4}
{1, 3}

{2, 5}

{3, 4}

{4, 5}
{1, 5}

{1, 2}
{2, 3}

B2

B′
2

O2 = K(5, 2) G+
3

Figure 1. The Petersen graph O2 = K(5, 2) (left) and the graph G+
3 (right) that is

isomorphic to it. The isomorphism is defined in the proof of Lemma 4. The vertices
of the Petersen graph are shown as 2-element subsets of [5] = {1, 2, 3, 4, 5}, together
with the corresponding characteristic bitstrings. Black squares represent 1-bits and
white squares represent 0-bits.

hypergraphs [Bar75] to partition the vertices of K(ck, k) into cliques of size c. The asymptotically
best result currently known, again due to Y. Chen [Che03], is that K(n, k) has a Hamilton cycle if
n ≥ (3k + 1 +

√
5k2 − 2k + 1)/2 = (1 + o(1))2.618 . . . · k.

Another line of attack towards proving Hamiltonicity is to find long cycles in K(n, k). To this end,
Johnson [Joh04] showed that there exists a constant c > 0 such that the odd graph Ok has a cycle that
visits at least a (1− c/

√
k)-fraction of all vertices, which is almost all vertices as k tends to infinity.

This was generalized and improved in [MS16], where it was shown that K(n, k) has a cycle visiting
a 2k/n-fraction of all vertices. The last result implies that Ok has a cycle visiting a (1− 1/(2k+ 1))-
fraction of the vertices (e.g., the Petersen graph O2 has a cycle that visits 8 of its 10 vertices).

A different relaxation of proving Hamiltonicity is to construct a cycle factor, that is, a collection
of vertex-disjoint cycles that together cover all vertices of the graph. From this point of view, a
Hamilton cycle is a cycle factor consisting of a single cycle. In this direction, Johnson and Kierstead
[JK04] showed that the edges of Ok can be partitioned into cycle factors for odd k and into cycle
factors and one matching for even k. A different cycle factor in Ok, which turns out to be crucial
for our present result, was constructed in [MSW17]. It is shown in Figure 2 for the case k = 3.

1.3. Bipartite Kneser graphs. Bipartite Kneser graphs form another family of vertex-transitive
graphs closely related to Kneser graphs. The bipartite Kneser graph H(n, k) has all k-element
and all (n − k)-element subsets of [n] as vertices and all pairs of these subsets such that one is
contained in the other as edges. It has been a long-standing problem to show that H(n, k) has
a Hamilton cycle. A detailed account of the historic developments is given in [MS16]. Also here,
the sparsest case H(2k + 1, k) resisted all attacks for more than three decades, and the question
whether H(2k + 1, k) has a Hamilton cycle became known as the middle levels conjecture. This
conjecture has been recently solved affirmatively in [Müt16, GMN17], and the general case, the
Hamiltonicity of H(n, k), has been settled subsequently in [MS16]. Note that proving Hamiltonicity
for the Kneser graph K(n, k) is arguably harder than for the bipartite Kneser graph H(n, k). In
particular, proving that the odd graphs Ok = K(2k + 1, k) are Hamiltonian is harder than the
middle levels conjecture. Specifically, from a Hamilton cycle (x1, . . . , xN) in K(n, k), where N =

(n
k

)
,

we can easily construct a Hamilton cycle or a Hamilton path in H(n, k), as follows. Consider the
sequences C1 := (x1, x2, x3, x4, . . .) and C2 := (x1, x2, x3, x4, . . .), where xi := [n] \ xi. If N is odd,

2

then C1 and C2 together form a Hamilton cycle in H(n, k). If N is even, then C1 and C2 are two
cycles in H(n, k) that can be joined to form a Hamilton path.

1.4. Our results. We prove that the odd graphs Ok = K(2k+ 1, k) (except for the Petersen graph)
contain Hamilton cycles. That is, we resolve the sparsest case of the conjecture on the Hamiltonicity
of Kneser graphs in the affirmative.

Theorem 1. For every integer k ≥ 3, the odd graph Ok = K(2k + 1, k) has a Hamilton cycle.

Using the conditional results proved by Johnson [Joh11], Theorem 1 immediately yields the
following more general statement.

Theorem 2. For any integers k ≥ 3 and a ≥ 0, the Kneser graph K(2k+2a, k) has a Hamilton cycle.

We also establish the following counting version of Theorem 1.

Theorem 3. For every integer k ≥ 6, the odd graph Ok = K(2k + 1, k) has at least 22k−6 distinct
Hamilton cycles.

The double-exponential growth of the number of Hamilton cycles guaranteed by Theorem 3 is
essentially best possible: since Ok has

(2k+1
k

)
vertices, the number of Hamilton cycles in Ok is at

most
(2k+1

k

)
! = 22O(k) . Note also that applying automorphisms of Ok to a a single Hamilton cycle

yields at most (2k + 1)! = 2Θ(k log k) distinct Hamilton cycles, substantially less than guaranteed by
Theorem 3. In other words, Theorem 3 is not an immediate consequence of Theorem 1.

1.5. Gray code algorithms. Hamilton cycles in Kneser graphs and bipartite Kneser graphs are
closely related to Gray codes. A combinatorial Gray code is the algorithmic problem of generating
all objects in a combinatorial class, such as bitstrings, permutations, combinations, partitions, trees,
or triangulations, etc., in some well-defined order. Gray codes have found widespread use in areas
such as circuit testing, signal encoding, data compression, graphics, and image processing etc.—see
the survey [Sav97] and the references therein. The ultimate goal for Gray code algorithms is to
generate each new object from the previous one in constant time, which entails that consecutive
objects may differ only by a constant amount. A Gray code thus corresponds to a Hamilton cycle
in a graph whose vertices are the combinatorial objects and whose edges connect objects that differ
only by such an elementary transformation. More than half of the most recent volume of Knuth’s
seminal series The Art of Computer Programming [Knu11] is devoted to this fundamental subject.
The two hardest Gray code problems mentioned in Knuth’s book (Problem 71 in Section 7.2.1.2
and Problem 56 in Section 7.2.1.3), including the middle levels conjecture, have been solved in the
meantime, and efficient algorithms to generate these Gray code have been developed in [MN17] and
[SW17]. Recall from Section 1.3 that Hamiltonicity of the odd graphs is arguably harder than the
middle levels conjecture.

Our proof of Theorem 1 is constructive and translates straightforwardly into an algorithm to
compute a Hamilton cycle in the odd graph Ok in polynomial time (polynomial in the size of the
graph, which is exponential in k). We can identify each k-element subset of [2k+ 1] with a bitstring
of length 2k+ 1, where the ith bit is set to 1 if the element i is contained in the set and it is set to 0
otherwise; see Figure 1. A Hamilton cycle in the odd graph thus corresponds to a Gray code listing
of all bitstrings of length 2k + 1 with exactly k many 1-bits, such that consecutive bitstrings differ
in all but one position. It remains open whether our proof can be translated into a constant-time
algorithm to generate this Gray code, that is, an algorithm that in each step computes the bit that
is not flipped in constant time, using only O(k) memory space and polynomial initialization time.
To avoid costly complementation operations, such an algorithm could maintain two bitstrings, one
the complement of the other, along with a flag indicating which of the two bitstrings is the current
one; then, in each step, only a single bit in both bitstrings and the flag would need to be flipped.

3

H3

α

β δ

O3 = K(7, 3)

Figure 2. Illustration of our Hamiltonicity proof for the odd graph O3 = K(7, 3).
The vertices are represented as bitstrings, where 1-bits are drawn as black squares and
0-bits as white squares. The bold colored cycles constitute the cycle factor C3. Two
flipping cycles of length 6 are highlighted by dashed and dotted lines. The five colored
cycles from C3 correspond to the vertices of the hypergraph H3, and the two flipping
cycles correspond to the hyperedges α and β. There is another flipping cycle of length
8 in the graph O3, corresponding to the hyperedge δ in H3, but this cycle is not shown
in the figure. As {α, β} is a spanning tree in H3, taking the symmetric difference of
the edge sets of the cycles in C3 with the edge sets of the two corresponding flipping
cycles indicated in the figure yields a Hamilton cycle in the graph O3.

1.6. Proof idea. We construct a Hamilton cycle in the odd graph Ok as follows; see Figure 2. We
start with the cycle factor Ck in the odd graph Ok described in [MSW17]. It has the property that
all of its cycles have the same length 2k + 1 and the number of cycles is the kth Catalan number.
Furthermore, the cycles in Ck can be identified with so-called Dyck words of length 2k, that is,
bitstrings of length 2k with the property that every prefix has at least as many 1-bits as 0-bits. It is
well known that the number of such Dyck words is equal to the kth Catalan number [Sta99].

Given the cycle factor Ck, we modify it locally to join its cycles into a single Hamilton cycle in
Ok. Each such modification involves ` cycles C1, . . . , C` from the factor Ck and a 2`-cycle C ′ that
shares exactly one edge with each of C1, . . . , C`. Specifically, C ′ shares every second of its edges
with one of the ` cycles, and every other edge of C ′ goes between two different cycles. Consequently,
taking the symmetric difference of the edge set of C ′ with the edge sets of C1, . . . , C` yields a single
cycle on the vertex set of all C1, . . . , C`. We call a cycle C ′ with this property a flipping cycle.
In Figure 2, two flipping 6-cycles are highlighted with dashed and dotted lines. We perform this
operation simultaneously with an appropriate set of mutually edge-disjoint flipping cycles so as
to join all cycles in Ck into a single cycle. Although the joining operation can work with flipping

4

2`-cycles for any ` ≥ 2, we will use only 6-cycles (` = 3) and 8-cycles (` = 4). We cannot use flipping
4-cycles (` = 2), because the odd graph Ok has no 4-cycles at all.

This approach can be formalized as follows. We construct a hypergraph Hk whose vertices are
the Dyck words of length 2k representing the cycles of the factor Ck. Each `-edge (3-edge or 4-edge)
of Hk represents a flipping 2`-cycle (6-cycle or 8-cycle, respectively) that can be used to join ` cycles
from Ck as described before. In the example illustrated in Figure 2, the hypergraph H3 consists
of three hyperedges labelled α, β, and δ of cardinalities 3, 3, and 4, respectively. Here is the key
insight about the hypergraph Hk: in order to prove that the odd graph Ok has a Hamilton cycle, it
suffices to prove that the hypergraph Hk has a spanning tree, that is, a connected and acyclic set
of hyperedges. In such a spanning tree, any two hyperedges intersect in at most one element. For
instance, the hypergraph H3 in Figure 2 has a spanning tree {α, β}. The hypergraph Hk that we
construct has the property that the flipping cycles represented by the hyperedges in any spanning
tree are mutually edge-disjoint. Consequently, every spanning tree in Hk corresponds to a collection
of flipping cycles such that the symmetric difference of their edge sets and the edges of the cycles in
Ck results in a Hamilton cycle in the odd graph Ok.

The proof of Theorem 3 exploits the degrees of freedom that are inherent in the construction
above to provide double-exponentially many distinct spanning trees in Hk, which give rise to double-
exponentially many distinct Hamilton cycles in Ok.

1.7. Outline of the paper. In Section 2, we introduce notation and terminology that will be used
throughout this paper, and we recall the construction of the cycle factor Ck given in [MSW17]. In
Section 3, we describe how the cycles in Ck are joined to form a Hamilton cycle in Ok, and we
present the proofs of Theorems 1–3. The proofs of some technical lemmas formulated in that section
are deferred to Sections 4 and 5.

2. Preliminaries

2.1. Bitstrings and Dyck paths. A bitstring is a finite sequence of digits 0 and 1 called the bits
of the bitstring. The empty bitstring is denoted by ε. The concatenation of two bitstrings x and y
is denoted by xy. For every bitstring x, we define x0 := ε and xn := xn−1x for n ≥ 1. The length
of a bitstring x is denoted by |x|. The complement of a bitstring x, denoted by x, is the bitstring
obtained from x by flipping every bit, that is, by replacing every 1-bit by a 0-bit and vice versa.

The weight of a bitstring x is the number of 1-bits in x. We let Bk and B′k denote the sets of
bitstrings of length 2k with weights k and k+ 1, respectively. We let Dk denote the set of bitstrings
of length 2k with weight k and with the property that in every prefix, the number of 1-bits is at least
the number of 0-bits. We also define D :=

⋃∞
k=0Dk, and we call any bitstring in D a Dyck word.

It is sometimes convenient to represent a Dyck word x ∈ Dk by a Dyck path of length 2k in the
integer lattice Z2. Every 1-bit in the Dyck word x is represented by an up-step, which changes
the current coordinates by (+1,+1), and every 0-bit is represented by a down-step, which changes
the current coordinates by (+1,−1); see Figure 3. The prefix property from the definition of Dk

corresponds to the property that the lattice path never goes below the abscissa.
For a Dyck word x = b1b2 · · · b2k ∈ Dk, where b1, . . . , b2k ∈ {0, 1}, we define #„x := b2kb2k−1 · · · b1.

That is, #„x is the complement of the reverse of x, which is itself a Dyck word in Dk. For example,
if x = 110010, then #„x = 101100. We call the operation x 7→ #„x mirroring. In terms of Dyck path
representation, it corresponds to taking the mirror image with respect to the vertical line x = k.

2.2. Graphs Gk and G+
k . We use standard graph-theoretic terminology, where the edges of every

graph that we consider are unordered pairs of vertices of the form {u, v}. We define Gk as the graph
with vertex set Bk ∪B′k and with edges that connect pairs of bitstrings that differ by exactly one
bit. In other words, Gk is the subgraph of the 2k-dimensional hypercube induced by the bitstrings
with weights k and k + 1. We also define G+

k as the graph obtained from Gk by adding all edges of

5

π(x) = (14, 8, 12, 10, 11, 9, 13, 6, 7, 2, 4, 3, 5, 1, 16, 15, 20, 18, 19, 17)

8 2

3

4 5

6

791310

12 11

14 1516 20

18 19

171 v

u

x = 11100101110000101100 = 1u0v

Figure 3. Dyck path representation of a Dyck word x ∈ D10 and the order in which
its up-steps and down-steps occur in the sequence π(x).

the form {x, x} where x ∈ Bk. This construction is illustrated on the right hand side of Figure 1,
where the edges {x, x} are highlighted in black. Observe that while the graph Gk is bipartite, the
graph G+

k is not.

Lemma 4. For every k ≥ 1, the graph G+
k is isomorphic to the odd graph Ok.

Proof. A natural isomorphism between G+
k and Ok is obtained by mapping every x ∈ Bk to x0

and every x ∈ B′k to x1 and by interpreting the resulting bitstrings of length 2k + 1 and weight k
as characteristic vectors of k-element subsets of [2k + 1]. It is straightforward to verify that this
mapping preserves edges and non-edges. �

To prove Theorems 1 and 3, we will use Lemma 4 and construct Hamilton cycles in G+
k for all k ≥ 3.

2.3. Cycle factor Ck in G+
k . A cycle factor in a graph is a collection of vertex-disjoint cycles that

together cover all vertices of the graph. The cycle factor Ck in G+
k , which we will define shortly, was

introduced and analyzed in [MSW17]. The cycles in Ck correspond to Dyck words in Dk as follows.
For every Dyck word x ∈ Dk, we define a permutation π(x) of the set [2k]. Then, we define a path
P (x) in Gk whose subsequent vertices are obtained by starting from x and flipping the bits one by
one at positions determined by the sequence π(x) = (a1, . . . , a2k), ending at x. Finally, we add the
edge {x, x} to P (x), obtaining a cycle C(x) in G+

k that becomes a member of Ck.
We let (a1, . . . , an) denote the sequence of integers a1, . . . , an. We generalize this notation allowing

ai to be itself an integer sequence—in that case, if ai = (b1, . . . , bm), then (a1, . . . , an) is shorthand
for (a1, . . . , ai−1, b1, . . . , bm, ai+1, . . . , an). The empty integer sequence is denoted by (). For an
integer sequence π = (a1, . . . , an) and an integer a, we define

a+ π := (a+ a1, . . . , a+ an), a− π := (a− a1, . . . , a− an).
It is clear that every non-empty Dyck word x ∈ D has a unique decomposition of the form

x = 1u0v, where u, v ∈ D; see Figure 3. Using this fact, for every Dyck word x ∈ D, we define an
integer sequence π(x) of length |x| as follows, by induction on |x|:

π(ε) := (),
π(1u0v) :=

(
|u|+ 2, |u|+ 2− π(#„u), 1, |u|+ 2 + π(v)

)
for any u, v ∈ D.

(1)

The following two properties of the sequence π(x) for x ∈ Dk follow by straightforward induction:
(i) π(x) is a permutation of the set [2k];
(ii) if π(x) = (a1, . . . , a2k), then the bit of x at position ai is 0 for i odd and 1 for i even.

In terms of Dyck path representation, we can interpret π(x) as the alternating order of down-steps
and up-steps of the Dyck path x; see Figure 3. The first term of π(x) represents the first down-step
that touches the abscissa—it goes from (t− 1, 1) to (t, 0) where t = |u|+ 2. The next part of π(x)
represents the up-steps and down-steps of the part u of the Dyck path between (1, 1) to (t− 1, 1)

6

x1 = 111000 x2 = 110100 x3 = 110010 x4 = 101100 x5 = 101010
P (x1) π(x1) P (x2) π(x2) P (x3) π(x3) P (x4) π(x4) P (x5) π(x5)
111000 6 110100 6 110010 4 101100 2 101010 2111001 2 110101 4 110110 2 111100 1 111010 1101001 4 110001 5 100110 3 011100 6 011010 4101101 3 110011 2 101110 1 011101 4 011110 3100101 5 100011 3 001110 6 011001 5 010110 6100111 1 101011 1 001111 5 011011 3 010111 5000111 001011 001101 010011 010101

Figure 4. The set of paths P3 = {P (x1), . . . , P (x5)} in the graph G3 together with
the bit-flip sequences π(x1), . . . , π(x5) that generate them. The edges on the three
flipping cycles that witness the flippable tuples α(ε), β, and δ defined in (3) are
indicated by dashed, dotted, and solid frames, respectively.

in the order obtained recursively on the mirror image of u. The next term of π(x) represents the
first up-step, which goes from (0, 0) to (1, 1). The final part of π(x) represents the down-steps and
up-steps of the part v of the Dyck path between (t, 0) to (|x|, 0) ordered recursively.

Now, let k ≥ 1, x ∈ Dk, and π(x) = (a1, . . . , a2k). Using the properties (i) and (ii) above, we
define a path P (x) = x0x1 · · ·x2k in the graph Gk so that x0 = x and xi is obtained from xi−1 by
flipping the bit at position ai for every i ∈ [2k], whence it follows that x2k = x. We call π(x) the
bit-flip sequence for P (x). We define the set of paths Pk by

Pk := {P (x) | x ∈ Dk}.

The set of paths P3 with the corresponding bit-flip sequences is illustrated in Figure 4.

Lemma 5 ([MSW17]). For every k ≥ 1, the paths in Pk are mutually vertex-disjoint, and together
they cover all vertices of Gk.

For every Dyck word x ∈ Dk and every bit position i ∈ [2k], we let e(x, i) denote the edge of the
path P (x) along which the ith bit is flipped. That is, if π(x) = (a1, . . . , a2k), then the path P (x)
contains edges e(x, a1), . . . , e(x, a2k) is this order along the path from x to x. For example, for x1
as in Figure 4, we have e(x1, 3) = {101101, 100101} and e(x1, 1) = {100111, 000111}.

For every Dyck word x ∈ Dk, the first vertex x and the last vertex x of P (x) are adjacent in G+
k .

We let C(x) denote the cycle in G+
k obtained by adding the edge {x, x} to the path P (x). We define

Ck := {C(x) | x ∈ Dk}.

It follows from Lemma 5 that the set of cycles Ck is a cycle factor in G+
k . Figure 2 illustrates the

cycles in C3, which are obtained by closing the paths in P3 illustrated in Figure 4 and applying the
isomorphism between G+

k and Ok mentioned in the proof of Lemma 4.

3. Construction of a Hamilton cycle

We describe how to modify the cycle factor Ck to join its cycles to a single Hamilton cycle. As
indicated in Section 1.6, the modification operation consists in taking the symmetric difference with
a carefully chosen set of cycles of length 6 or 8. The key ingredient of our argument is Lemma 6
below, which reduces the Hamiltonicity problem to a spanning tree problem in a suitably defined
hypergraph. To make these ideas formal, we introduce a few definitions.

A flipping cycle on Dk is a cycle in Gk of length 2` that has exactly ` edges in common with `
distinct paths in the set Pk (one common edge with each path).

7

A marked Dyck word is a non-empty Dyck word in which exactly one bit has been marked. More
formally, a marked Dyck word is a pair (x,m) with x ∈ Dk and m ∈ [2k] for some k ≥ 1, where m is
the position of the marked bit in x. We simplify notation of marked Dyck words by underlining the
marked bit. For instance, 101100 denotes the marked Dyck word (101100, 5). We define prepending
to, appending to, and mirroring a marked Dyck word (x,m) in a natural way, as follows:

u (x,m) v := (uxv, |u|+m) for any bitstrings u and v such that uv ∈ D,
„

(x,m) := (#„x , |x|+ 1−m).
(2)

In terms of Dyck path representation, (x,m) is a Dyck path where the mth step is marked; see
Figure 5. Under the operations of prepending, append and mirroring, the marked step remains at
the same relative position. For instance, if (x,m) = 101100, then 1(x,m)010 = 1101100010 and

„

(x,m) = 110010.
A marked `-tuple on a set of Dyck words X ⊆ Dk is an unordered `-tuple of marked Dyck

words of the form τ = {(x1,m1), . . . , (x`,m`)}, where x1, . . . , x` are distinct Dyck words in X,
m1, . . . ,m` ∈ [2k], and ` ≥ 3. The set {x1, . . . , x`} ⊆ X is called the support of such a marked
`-tuple τ and it is denoted by supp τ . The index mi is called the mark of xi in τ . A marked
`-tuple τ = {(x1,m1), . . . , (x`,m`)} on X is called a flippable `-tuple on X if there is a flipping 2`-
cycle in Gk that contains exactly the edges e(x1,m1), . . . , e(x`,m`) of the paths P (x1), . . . , P (x`),
respectively. We say that such a flipping cycle witnesses the flippable tuple τ .

To get an intuition for these definitions, consider the Dyck words x1, x2, and x3 in the first
three columns in Figure 4. Then τ = {111000, 110100, 110010} is a marked triple on D3 with
support supp τ = {x1, x2, x3}. In fact, it is a flippable triple on D3 witnessed by a flipping 6-cycle
W = (100101, 100111, 100110, 110110, 110100, 110101) that contains the edges e(x1, 5) of P (x1),
e(x2, 6) of P (x2), and e(x3, 2) of P (x3), indicated in Figure 4 by dashed frames. By taking the
symmetric difference with W , the cycles C(x1), C(x2), and C(x3) become joined into a single cycle.
This observation motivates the definitions that follow.

Let X ⊆ Dk (where k ≥ 2), let X be a set of flippable tuples on X, and let H = (X,X). We call
such a structure H a flippability hypergraph on X, and we apply a few standard hypergraph-theoretic
terms to H (as follows), although the reader should realize that the members of X convey the marks
as extra information in addition to the standard hypergraph structure. Thus, the subhypergraph of
H induced by a non-empty set U ⊆ X is defined as

H[U] :=
(
U, {τ ∈ X | supp τ ⊆ U}

)
.

A spanning tree of H is a subset of X defined as follows, by induction on |X|. If |X| = 1, then the
only spanning tree of H is the empty set. If |X| ≥ 2, then a set T ⊆ X is a spanning tree of H if and
only if there are a flippable `-tuple τ ∈ T , a partition of X into non-empty subsets X1, . . . , X`, and
spanning trees T1, . . . , T` of H[X1], . . . ,H[X`] (respectively) such that T = {τ} ∪ T1 ∪ · · · ∪ T` and
|supp τ ∩Xi| = 1 for each i ∈ [`]. For instance, a one-element set T = {τ} ⊆ X is a spanning tree
of H if and only if supp τ = X, and a two-element set T = {τ1, τ2} ⊆ X is a spanning tree of H if
and only if supp τ1 ∪ supp τ2 = X and |supp τ1 ∩ supp τ2| = 1. In general, straightforward induction
shows that the supports of any two flippable tuples in a spanning tree have at most one element of
X in common. A spanning tree T of H is conflict-free if the following condition is satisfied: for any
two distinct flippable tuples τ1, τ2 ∈ T whose supports have a common element x ∈ X, the mark of
x in τ1 is different from the mark of x in τ2.

The following lemma is the cornerstone behind our proofs of Theorems 1 and 3. It reduces the
problem of finding a Hamilton cycle in the graph G+

k (which is isomorphic to the odd graph Ok) to
the problem of finding a conflict-free spanning tree in a flippability hypergraph on Dk.

8

Lemma 6. Let H be a flippability hypergraph on Dk, where k ≥ 3. If H has a conflict-free spanning
tree, then the graph G+

k has a Hamilton cycle. Moreover, distinct conflict-free spanning trees of H
give rise to distinct Hamilton cycles in G+

k .

Proof. For every flippable tuple τ on Dk, fix a flipping cycle W (τ) in G+
k that witnesses τ . For a

non-empty set X ⊆ Dk, let G+
k [X] denote the subgraph of G+

k induced by the set of all vertices of the
cycles C(x) with x ∈ X. For a non-empty set X ⊆ Dk and a conflict-free spanning tree T of H[X],
let S(X, T) denote the symmetric difference of the edge sets of the cycles C(x) with x ∈ X and the
cycles W (τ) with τ ∈ T . We prove the following statement, which immediately yields the lemma:

Claim. Let X be a non-empty subset of Dk. For every conflict-free spanning tree T in H[X], the
set S(X, T) forms a Hamilton cycle in G+

k [X]. Moreover, the mapping T 7→ S(X, T) is one-to-one.

The proof of the claim goes by induction on |X|. If |X| = 1, then the empty set is the unique
conflict-free spanning tree in H[X], and S(X, ∅) = C(x) for the unique x ∈ X. For the rest of the
proof, suppose that |X| ≥ 2 and that the claim holds for all subsets of Dk smaller than X.

Let T be a conflict-free spanning tree in H[X]. By the definition of a spanning tree, there are a
flippable `-tuple τ ∈ T , a partition of X into non-empty subsets X1, . . . , X`, and spanning trees
T1, . . . , T` of H[X1], . . . ,H[X`] (respectively) such that T = {τ} ∪ T1 ∪ · · · ∪ T` and |supp τ ∩Xi| = 1
for each i ∈ [`]. Since T1, . . . , T` ⊂ T , the spanning trees T1, . . . , T` are conflict-free. Therefore, by the
induction hypothesis, the sets S(X1, T1), . . . , S(X`, T`) form Hamilton cycles in G+

k [X1], . . . , G+
k [X`].

Suppose τ = {(x1,m1), . . . , (x`,m`)}, where xi ∈ Xi and mi ∈ [2k] for i ∈ [`]. The unique common
edge of W (τ) with G+

k [Xi] is the edge e(xi,mi), which belongs to S(Xi, Ti), as T is conflict-free, for
i ∈ [`]. The set S(X, T) is the symmetric difference of S(X1, T1), . . . , S(X`, T`) and W (τ), which is
therefore a single cycle—a Hamilton cycle in G+

k [X].
Now, suppose that H[X] has another conflict-free spanning tree T ′ such that S(X, T) =

S(X, T ′) =: S. For each i ∈ [`], the only edges in S that connect Xi with X \Xi are those that pre-
cede and follow e(xi,mi) onW (τ), which therefore belong to the same cycle witnessing some flippable
tuple in T ′. It follows that W (τ) witnesses one of the flippable tuples in T ′, which implies τ ∈ T ′.
The symmetric difference of S and W (τ) is the disjoint union of S(X1, T1), . . . , S(X`, T`). Therefore,
we have T ′ = {τ}∪ T ′1 ∪ · · · ∪ T ′` , where T ′i is a set of flippable tuples on Xi for each i ∈ [`]. It easily
follows that T ′i is a conflict-free spanning tree of H[Xi] such that S(Xi, Ti) = S(Xi, T ′i) for each
i ∈ [`]. This and the induction hypothesis yield Ti = T ′i for each i ∈ [`] and therefore T = T ′. �

To use Lemma 6, we need to provide an appropriate flippability hypergraph on Dk. We start by
defining a set Φ of marked tuples called patterns. We let Φ := {α(w) | w ∈ D} ∪ {β, γ, δ}, where

α(w) := {1w11000, 1w10100, 1w10010}, γ := {11001100, 11011000, 11101000},
β := {111000, 101100, 101010}, δ := {111000, 110100, 101100, 101010}.

(3)

The Dyck path representation of these tuples is shown in Figure 5. The next lemma asserts that
these definitions indeed yield flippable tuples.

Lemma 7. Every pattern in Φ defined by (3) is a flippable tuple.

Figure 4 shows three flipping cycles that witness the patterns α(ε), β, and δ.
The next lemma allows us to generate more flippable tuples from the ones in Φ by prepending

and appending certain bitstrings to them. We introduce the following auxiliary notation for every
flippable tuple τ = {(x1,m1), . . . , (x`,m`)} on Dk:

uτv := {u(x1,m1)v, . . . , u(x`,m`)v} = {(ux1v, |u|+m1), . . . , (ux`v, |u|+m`)}
for any bitstrings u and v such that uv ∈ D,

#„τ := {
„

(x1,m1), . . . ,
„

(x`,m`)} = {(# „x1, 2k + 1−m1), . . . , (#„x`, 2k + 1−m`)}.
(4)

9

Lemma 8. If τ is a flippable tuple, then
(i) uτv is a flippable tuple for any bitstrings u and v such that uv ∈ D and |u| is even,
(ii) u #„τ v is a flippable tuple for any bitstrings u and v such that uv ∈ D and |u| is odd.

We use Lemmas 7 and 8 to construct a set Ψ of flippable tuples. Namely, we define
Ψ := {uϕv | ϕ ∈ Φ, uv ∈ D, and |u| is even} ∪ {u #„ϕv | ϕ ∈ Φ, uv ∈ D, and |u| is odd}. (5)

By Lemmas 7 and 8, every marked tuple in Ψ is flippable. Observe that the set of flippable tuples
Ψ is already closed with respect to the operation described in Lemma 8, that is,

Ψ = {uτv | τ ∈ Ψ, uv ∈ D, and |u| is even} ∪ {u #„τ v | τ ∈ Ψ, uv ∈ D, and |u| is odd}. (6)
Next, we define the set Ψk for each k ≥ 2 by extracting only the flippable tuples on Dk from Ψ:

Ψ2 := ∅, Ψk := {τ ∈ Ψ | τ is a flippable tuple on Dk} for k ≥ 3. (7)
Finally, we define a flippability hypergraph Hk := (Dk,Ψk) for k ≥ 2.

Lemma 9. For every k ≥ 3, the set Ψk of flippable tuples defined by (7) has the property that for
any τ1, τ2 ∈ Ψk, if supp τ1 ∩ supp τ2 = {x} where x ∈ Dk, then the mark of x in τ1 is different from
the mark of x in τ2. In particular, every spanning tree of the hypergraph Hk is conflict-free.

In view of Lemmas 6 and 9, it remains to prove that the hypergraph Hk has a spanning tree
(many distinct spanning trees) to complete the proofs of Theorems 1 and 3.

Lemma 10. For every k ≥ 3, the hypergraph Hk has a spanning tree.

Lemma 11. For every k ≥ 6, the hypergraph Hk has at least 22k−6 distinct spanning trees.

Proof of Theorem 1. Combine Lemma 6, Lemma 9, and Lemma 10. �

Proof of Theorem 2. Combine Theorem 1 and [Joh11, Theorem 1]. �

Proof of Theorem 3. Combine Lemma 6, Lemma 9, and Lemma 11. �

4. Proofs of Lemmas 7, 8, and 9

Proof of Lemma 7. Consider the sequences
Cα(w) := (1w00101, 1w00111, 1w00110, 1w10110, 1w10100, 1w10101) for w ∈ D,
Cβ := (111000, 111001, 011001, 011011, 011010, 111010),
Cγ := (11011100, 10011100, 10011101, 10011001, 11011001, 11011000),
Cδ := (111000, 111001, 110001, 110011, 010011, 011011, 011010, 111010).

(8)

It is easy to verify that each of these sequences is a cycle in some Gk for the appropriate value of k.
We claim that for each pattern ϕ ∈ Φ the cycle Cϕ from (8) is a flipping cycle that witnesses ϕ.

For ϕ ∈ {β, δ} this can be verified directly from Figure 4, as follows. The bitstrings on the cycles
Cβ and Cδ are indicated in the figure by dotted and solid frames, respectively. Both cycles intersect
exactly once each of the paths that start at the respective vertices in the tuples β and δ. Furthermore,
the bits flipped along the indicated edges are precisely those that are marked in β and δ.

In the same way, the claim can be verified for ϕ = α(w) when w = ε. The bitstrings on the cycle
Cα(ε) are indicated in Figure 4 by dashed frames. For general w ∈ D, by the definition (1), the
initial parts of the paths in P3+|w|/2 that start at the members of α(w) look as follows:

P (1w11000) = (1w11000, 1w11001, 1w01001, 1w01101, 1w00101, 1w00111, . . .),
P (1w10100) = (1w10100, 1w10101, . . .),
P (1w10010) = (1w10010, 1w10110, 1w00110, . . .).

(9)

10

For w = ε, these paths are exactly the same as P (x1), P (x2), and P (x3) in Figure 4. The 6-cycle
Cα(w) defined by (8) intersects every path from (9) exactly in the last edge explicitly shown in
(9). Furthermore, the bits flipped along the intersection edges are exactly the marked bits of the
members of α(w) as defined by (3).

Finally, we consider the case ϕ = γ. The initial parts of the paths in P4 that start at the members
of γ look as follows:

P (11001100) = (11001100, 11011100, 10011100, . . .),
P (11011000) = (11011000, 11011001, . . .),
P (11101000) = (11101000, 11101001, 10101001, 10111001, 10011001, 10011101, . . .).

(10)

The cycle Cγ defined by (8) intersects every path from (10) exactly in the last edge explicitly shown
in (10), and the bits flipped along the intersection edges are exactly the marked bits of the members
of γ as defined by (3). �

Proof of Lemma 8. Let τ = {(x1,m1), . . . , (x`,m`)}. Let C = (y1, . . . , y2`) be a flipping cycle of
length 2` that witnesses τ . It follows from the definition (1) that for each i = 1, . . . , `, the sequence
π(uxiv) is a concatenation of three sequences πu, π′(xi), and πv, where the concatenation of the
sequences πu and πv is a permutation of {1, . . . , |u|} ∪ {|u|+ 2k + 1, . . . , |u|+ 2k + |v|}, and πu and
πv are the same for each i.

If |u| is even, then π′(xi) = |u| + π(xi). As a consequence, the paths P (uxiv) each contain
a subpath of the form u′P (xi)v′, obtained from P (xi) by prepending u′ and appending v′ to all
bitstrings of P (xi), for some bitstrings u′ and v′ that are the same for each i and satisfy |u′| = |u|
and |v′| = |v|. Therefore, the cycle u′Cv′ := (u′y1v

′, . . . , u′y2`v
′) is a flipping cycle that witnesses

uτv. This proves (i).
If |u| is odd, then π′(xi) = |u| + 2k + 1 − π(xi). As a consequence, the paths P (u #„xiv) each

contain a subpath of the form u′
„

P (xi)v′, obtained from P (xi) by mirroring each bitstring and then
prepending u′ and appending v′ to it, for some bitstrings u′ and v′ that are the same for each i and
satisfy |u′| = |u| and |v′| = |v|. Therefore, the cycle u′Cv′ := (u′y1v

′, . . . , u′y2`v
′) is a flipping cycle

that witnesses u #„τ v (recall that |xi| = 2k). This proves (ii). �

Proof of Lemma 9. Let #„Φ := { #„ϕ | ϕ ∈ Φ}. Let τ1 and τ2 be flippable tuples in Ψk such that
supp τ1 ∩ supp τ2 = {x}, where x ∈ Dk. Let i ∈ {1, 2}. By (5), we have τi = uiϕivi, where ui and vi
are some bitstrings such that uivi ∈ D and

ϕi ∈ Φ if |ui| is even, ϕi ∈
#„Φ if |ui| is odd. (11)

Since x ∈ supp τi, we have x = uixivi for some Dyck word xi ∈ suppϕi. Let mi be the mark of xi
in ϕi. It follows that |ui|+mi is the mark of x in τi.

Suppose for the sake of contradiction that the mark of x in τ1 is the same as the mark of x in τ2,
that is, |u1|+m1 = |u2|+m2 =: m. Let p := max(1−m1, 1−m2) and q := min(|x1|−m1, |x2|−m2).
Thus we have p ≤ 0 ≤ q. The fact that u1x1v1 = u2x2v2 and |u1|+m1 = |u2|+m2 implies that for
each i ∈ {p, p+ 1, . . . , q}, the (m1 + i)th bit of x1 is equal to the (m2 + i)th bit of x2. We claim that
this is possible only when (x1,m1) = (x2,m2). The proof of this claim involves consideration of all
possible cases of ϕ1 and ϕ2 satisfying (11) and all possible cases of marked Dyck words (x1,m1) ∈ ϕ1
and (x2,m2) ∈ ϕ2. To avoid tedious case distinctions, we propose a visual argument using the Dyck
path representation of x. Figure 5 presents the Dyck paths of the members of the patterns in Φ in
which the steps representing the marked bits have been marked white or black according to the
following marking rule: steps at odd positions are marked white, and steps at even positions are
marked black.

11

α1(w) := 1w11000

ww w

α2(w) := 1w10100 α3(w) := 1w10010

β1 := 111000 β2 := 101100 β3 := 101010

δ1 := 111000 δ3 := 101100δ2 := 110100

flippable triple α(w)

flippable triple β

flippable quadruple δ

γ1 := 11001100

flippable triple γ

γ2 := 11011000 γ3 := 11101000

δ4 := 101010

Figure 5. Dyck path representation of the patterns Φ defined by (3). The steps of
the Dyck paths that represent the marked bits are highlighted white at odd positions
and black at even positions.

α1(w)

β2

δ2

#„

β3,
#„

δ4

#„

δ3
w

α2(w)

„

α3(w)

β1, δ1

#„γ1

γ2

γ3

w

#„w

Figure 6. Illustration for the proof of Lemma 9. Red double arrows indicate
mismatches between the Dyck paths aligned at the marked down-steps.

12

Consider the Dyck path x in which the mth step has been marked white or black according to
this rule. Let i ∈ {1, 2}. The common part of such a marked Dyck path x with the infinite vertical
strip [|ui|, |uixi|] × R is a translated copy of the Dyck path xi in which the mith step has been
marked according to the marking rule above. That is, it has the form of one of the marked Dyck
paths in Figure 5 if |ui| is even or the form of the mirror image of one of the marked Dyck paths
in Figure 5 if |ui| is odd. Note that the mirroring does not change the mark colors—even though
the parity of the relative position of the mark from the left within the Dyck path changes, this is
compensated by the opposite parity of |ui|. The two translated marked Dyck paths x1 and x2 must
coincide on the common part of the two vertical strips.

Figure 6 presents every Dyck path from Figure 5 or its mirror image, so that the marked step is
a down-step. It shows them aligned horizontally with respect to the marked down-steps, separately
for each color. It can be checked in the figure that no two of these marked Dyck paths can coincide
on the common part of the two vertical strips considered in the argument above, unless they are the
same marked Dyck path. Specifically, a mismatch between any two distinct Dyck paths is indicated
by a red double arrow in the figure. The situation when the marked step is an up-step is analogous,
by symmetry.

We have argued that (x1,m1) = (x2,m2). This is possible only when {ϕ1, ϕ2} = {β, δ}, {ϕ1, ϕ2} =
{ #„

β ,
#„

δ }, or otherwise ϕ1 = ϕ2. In any case, we have |suppϕ1 ∩ suppϕ2| ≥ 3. The assumption that
|u1|+m1 = |u2|+m2 implies |u1| = |u2|, which implies u1 = u2 and v1 = v2. Therefore, for each
y ∈ suppϕ1 ∩ suppϕ2, we have u1yv1 = u2yv2 ∈ suppu1ϕ1v1 ∩ suppu2ϕ2v2 = supp τ1 ∩ supp τ2. It
follows that |supp τ1 ∩ supp τ2| ≥ 3, which contradicts the assumption that supp τ1 ∩ supp τ2 = {x}.

The second statement of Lemma 9 is an immediate consequence of the first statement and the
definition of a conflict-free spanning tree. �

5. Proofs of Lemmas 10 and 11

Before proceeding with the proofs, we generalize the notation (2) and (4). For every k ≥ 2 and
every set X ⊆ Dk, we define

uXv := {uxv | x ∈ X} for any bitstrings u and v such that uv ∈ D,
#„

X := { #„x | x ∈ X}.

Similarly, for every k ≥ 2 and every set X of flippable tuples on Dk, we define

uX v := {uτv | τ ∈ X}, for any bitstrings u and v such that uv ∈ D,
#„X := { #„τ | τ ∈ X}.

As a direct consequence of the definitions above and (6), if X ⊆ Dk and X is a spanning tree of
Hk[X], then the following holds for any bitstrings u and v such that uv ∈ D:
(i) if |u| is even, then uX v is a spanning tree of Hk+|uv|/2[uXv];
(ii) if |u| is odd, then u #„X v is a spanning tree of Hk+|uv|/2[u #„

Xv].
We will use this property extensively in the proofs below.

Proof of Lemma 10. For the reader’s convenience, this proof is illustrated in Figure 7.
For k ≥ 2, we partition the set of Dyck words Dk into two sets Ek and Fk as follows:

E2 := {1010}, E3 := D3 \ {110010}, Ek := 10Dk−1 for k ≥ 4,
F2 := {1100}, F3 := {110010}, Fk := Dk \ 10Dk−1 for k ≥ 4.

(12)

In particular, we have the following, for k ≥ 2:

1010(10)k−2 ∈ Ek, 1100(10)k−2 ∈ Fk. (13)

13

Fk

k = 2

k = 3

k = 4

k = 5

10E3

10F3

E3 = {δ}

E2 = ∅ F2 = ∅

F3 = ∅

F4 = {α(10), γ, 1 #„

β 0, α(ε)10}

T3 = {α(ε), β}

F5,2

F5,3

F5,4

F5,5

1
„

E201010 1
„

F201010 1
„

E201100 1
„

F201100

1
„

E3010

1
„

F3010

.

1
„

E40 1
„

F40

F5,2 = 1100D3

T4 = F4 ∪ {τ} ∪ 10E3 ∪ 10F3

Ek

γ1
#„

β 0

τ(1010) = α(ε)1010 τ(1100) = α(ε)1100

τ(10) = α(10)10

τ = β10

τ(ε) = α(1010)

β
δ

α(ε)

α(10)

α(ε)10

E4 = 10T3

Figure 7. Illustration of the proof of Lemma 10. The inductive construction of Tk
is shown for k = 4, and the inductive construction of Fk is shown for k = 5.

We prove the following more general statement, which directly implies the lemma:

Claim. There are a spanning tree Tk of Hk for k ≥ 3, a spanning tree Ek of Hk[Ek] for k ≥ 2, and a
spanning tree Fk of Hk[Fk] for k ≥ 2.

We prove the claim by induction on k.

14

For k = 2, we let E2 := ∅ and F2 := ∅, which trivially satisfy the conditions for a spanning tree,
as |E2| = |F2| = 1.

For k = 3, we let E3 := {δ} and F3 := ∅, which satisfy the conditions for a spanning tree, as
supp δ = E3 and |F3| = 1. We also let T3 := {α(ε), β}, which satisfies the conditions for a spanning
tree, because suppα(ε) ∪ suppβ = D3 and |suppα(ε) ∩ suppβ| = 1.

For k = 4, we let F4 := {τ1, τ2, τ3, τ4}, where
τ1 := {11011000, 11010100, 11010010} = α(10),
τ2 := {11001100, 11011000, 11101000} = γ,

τ3 := {11110000, 11100100, 11010100} = 1 #„

β 0,
τ4 := {11100010, 11010010, 11001010} = α(ε)10.

They belong to Ψk by construction. Moreover, we have supp τ1 ∪ supp τ2 ∪ supp τ3 ∪ supp τ4 = F4,
|supp τ1∩ supp τi| = 1 for every i ∈ {2, 3, 4}, and supp τi∩ supp τj = ∅ for any distinct i, j ∈ {2, 3, 4}.
This shows that F4 is indeed a spanning tree of H4[F4].

Finally, we proceed by induction on k to construct Tk and Ek for k ≥ 4, and Fk for k ≥ 5. The
construction of Ek makes use of Tk−1. The construction of Fk (for k ≥ 5) makes use of E2, . . . , Ek−1,
F2, . . . ,Fk−1, and Tk−2 (this is why the case k = 4 needs to be considered separately, as H2 has no
spanning tree). Finally, the construction of Tk makes use of Fk, Ek−1, and Fk−1.

Constructing Ek from Tk−1 for k ≥ 4 is straightforward: since Ek = 10Dk−1, it suffices to take
Ek := 10Tk−1, which is a spanning tree of Hk[Ek].

Now, we show how to construct Fk from E2, . . . , Ek−1, F2, . . . ,Fk−1, and Tk−2 for k ≥ 5. For
2 ≤ j ≤ k, let Fk,j :=

⋃j
i=2{1 #„u0v | u ∈ Di−1 and v ∈ Dk−i}. Since Fk = Fk,k, the following

statement, which we prove by auxiliary induction on j, directly implies the existence of a spanning
tree of Hk[Fk]:

Claim. For 2 ≤ j ≤ k, there is a spanning tree Fk,j of Hk[Fk,j].

For j = 2, we have Fk,2 = {1100v | v ∈ Dk−2} = 1100Dk−2, so we let Fk,2 := 1100Tk−2. Now,
suppose 3 ≤ j ≤ k. The fact that Ej−1 and Fj−1 form a partition of Dj−1 yields the following
partition of the set Fk,j :

Fk,j = Fk,j−1 ∪ {1 #„u0v | u ∈ Dj−1 and v ∈ Dk−j}

= Fk,j−1 ∪
⋃

v∈Dk−j

1 # „

Dj−10v

= Fk,j−1 ∪
⋃

v∈Dk−j

(
1 # „

Ej−10v ∪ 1 # „

Fj−10v
)
.

(14)

For every v ∈ Dk−j , consider the following marked triple on Fk,j :

τ(v) := {1(10)j−311000v, 1(10)j−310100v, 1(10)j−310010v} = α((10)j−3)v. (15)
It belongs to Ψk by construction. We have

1(10)j−311000v ∈ 1 # „

Fj−10v, 1(10)j−310100v ∈ 1 # „

Ej−10v, 1(10)j−310010v ∈ Fk,j−1,

where the first two memberships follow from (13). We take the spanning trees of the subhypergraphs
of Hk induced by the sets of the partition of Fk,j given by (14) and connect them into a single
spanning tree of Hk[Fk,j] using the triples τ(v) for all v ∈ Dk−j . That is, we let

Fk,j := Fk,j−1 ∪
⋃

v∈Dk−j

(
{τ(v)} ∪ 1 # „Ej−10v ∪ 1 # „Fj−10v

)
,

which is a spanning tree of Hk[Fk,j].

15

Finally, we show how to construct Tk from Fk, Ek−1 and Fk−1. Consider the following marked
triple on Dk:

τ := {111000(10)k−3, 101100(10)k−3, 101010(10)k−3} = β(10)k−3.

It belongs to Ψk by construction. We have
111000(10)k−3 ∈ Fk, 101100(10)k−3 ∈ 10Ek−1, 101010(10)k−3 ∈ 10Fk−1,

where the first membership is by the definition of Fk for k ≥ 4 and the other two follow from
(13). The sets Fk, 10Ek−1, and 10Fk−1 form a partition of Dk. We take the spanning trees of the
subhypergraphs induced by these partition sets and connect them into a single spanning tree of Hk
using the triple τ . That is, we let Tk := Fk∪{τ}∪10Ek−1∪10Fk−1, which is a spanning tree ofHk. �

Proof of Lemma 11. The proof proceeds along the same lines as the proof of Lemma 10, so we only
highlight the differences.

Apart from the partition of D4 into two sets E4 and F4 defined by (12), we will use another
one—a partition into sets E′4 and F ′4 defined as follows:

E′4 := D4 \ {11001100}, F ′4 := {11001100}.
It has the following property analogous to (13):

10101100 ∈ E′4, 11001100 ∈ F ′4. (16)
We define spanning trees E ′4 := {τ ′1, τ ′2, τ ′3, τ ′4, τ ′5} of H4[E′4] and F ′4 := ∅ of H4[F ′4], where

τ ′1 := {11110000, 11101000, 11100100, 11010100} = 1 #„

δ 0,
τ ′2 := {11011000, 11010100, 11010010} = α(10),
τ ′3 := {11100010, 11010010, 11001010} = α(ε)10,
τ ′4 := {11100010, 10110010, 10101010} = β10,
τ ′5 := {10111000, 10110100, 10101100, 10101010} = 10δ.

We have supp τ ′1 ∪ · · · ∪ supp τ ′5 = E′4, |supp τ ′i−1 ∩ supp τ ′i | = 1 for i ∈ {2, 3, 4, 5}, and supp τ ′i ∩
supp τ ′j = ∅ whenever |i− j| ≥ 2, which shows that E ′4 is indeed a spanning tree of H4[E′4], and F ′4
is a spanning tree of H4[F ′4] because |F ′4| = 1.

To obtain many spanning trees of Hk for k ≥ 6, we proceed as in the proof of Lemma 10 except
that we introduce variants to the construction of the spanning tree Fk,5 of Hk[Fk,5]. Consider an
arbitrary partition of Dk−5 into two sets X and Y . The fact that E4 and F4 as well as E′4 and F ′4
form partitions of D4 yields the following partition of Fk,5 analogous to (14):

Fk,5 = Fk,4 ∪ {1 #„u0v | u ∈ D4 and v ∈ Dk−5}

= Fk,4 ∪
⋃

v∈Dk−5

1 # „

D40v

= Fk,4 ∪
⋃
v∈X

(
1 # „

E40v ∪ 1 # „

F40v
)
∪
⋃
v∈Y

(
1

„

E′40v ∪ 1
„

F ′40v
)
.

(17)

Consider the following triples on Fk,5, where the first one is a special case of (15):
τ(v) := {1101011000v, 1101010100v, 1101010010v} = α(1010)v for v ∈ X,
τ ′(v) := {1110011000v, 1110010100v, 1110010010v} = α(1100)v for v ∈ Y.

They belong to Ψk by construction. We have
1101011000v ∈ 1 # „

F40v, 1101010100v ∈ 1 # „

E40v, 1101010010v ∈ Fk,4, for v ∈ X,

1110011000v ∈ 1
„

F ′40v, 1110010100v ∈ 1
„

E′40v, 1110010010v ∈ Fk,4, for v ∈ Y,

16

where the first two memberships follow from (13) and (16), respectively. We take the spanning trees
of the subhypergraphs of Hk induced by the sets of the partition of Fk,5 given by (17) and connect
them into a single spanning tree of Hk[Fk,5] using the triples τ(v) for all v ∈ X and the triples τ ′(v)
for all v ∈ Y . That is, we let

Fk,5 := Fk,4 ∪
⋃
v∈X

(
{τ(v)} ∪ 1 #„E40v ∪ 1 # „F40v

)
∪
⋃
v∈Y

(
{τ ′(v)} ∪ 1

#„

E ′40v ∪ 1
„

F ′40v
)
,

which is a spanning tree of Hk[Fk,5]. Then, we continue with the constructions of Fk and Tk exactly
as in the proof of Lemma 10.

Clearly, distinct choices of the partition of Dk−5 into two sets X and Y in the procedure above
give rise to distinct spanning trees Fk,5 of Hk[Fk,5], which consequently give rise to distinct spanning
trees Fk of Hk[Fk] and Tk of Hk. Since |Dk−5| = 1

k−4
(2k−10
k−5

)
≥ 2k−6 for k ≥ 6, there are at least

22k−6 distinct partitions of Dk−5 into sets X and Y , which give rise to at least 22k−6 distinct spanning
trees of Hk. �

References
[Bal72] A. T. Balaban. Chemical graphs. XIII. Combinatorial patterns. Rev. Roumain Math. Pures Appl., 17:3–16,

1972.
[Bar75] Zs. Baranyai. On the factorization of the complete uniform hypergraph. In Infinite and finite sets (Colloq.,

Keszthely, 1973; dedicated to P. Erdős on his 60th birthday), Vol. I, pages 91–108. Colloq. Math. Soc. János
Bolyai, Vol. 10. North-Holland, Amsterdam, 1975.

[Bár78] I. Bárány. A short proof of Kneser’s conjecture. J. Combin. Theory Ser. A, 25(3):325–326, 1978.
[Big79] N. Biggs. Some odd graph theory. In Second International Conference on Combinatorial Mathematics (New

York, 1978), volume 319 of Ann. New York Acad. Sci., pages 71–81. New York Acad. Sci., New York, 1979.
[CF02] Y. Chen and Z. Füredi. Hamiltonian Kneser graphs. Combinatorica, 22(1):147–149, 2002.
[Che00] Y. Chen. Kneser graphs are Hamiltonian for n ≥ 3k. J. Combin. Theory Ser. B, 80(1):69–79, 2000.
[Che03] Y. Chen. Triangle-free Hamiltonian Kneser graphs. J. Combin. Theory Ser. B, 89(1):1–16, 2003.
[CI96] W. E. Clark and M. E. H. Ismail. Binomial and Q-binomial coefficient inequalities related to the Hamiltonicity

of the Kneser graphs and their Q-analogues. J. Combin. Theory Ser. A, 76(1):83–98, 1996.
[CL87] B. Chen and K. Lih. Hamiltonian uniform subset graphs. J. Combin. Theory Ser. B, 42(3):257–263, 1987.
[EKR61] P. Erdős, C. Ko, and R. Rado. Intersection theorems for systems of finite sets. Quart. J. Math. Oxford Ser.

(2), 12:313–320, 1961.
[GMN17] P. Gregor, T. Mütze, and J. Nummenpalo. A short proof of the middle levels theorem. arXiv:1710.08249,

Oct 2017.
[Gre02] J. E. Greene. A new short proof of Kneser’s conjecture. Amer. Math. Monthly, 109(10):918–920, 2002.
[HW78] K. Heinrich and W. D. Wallis. Hamiltonian cycles in certain graphs. J. Austral. Math. Soc. Ser. A, 26(1):89–

98, 1978.
[JK04] J. R. Johnson and H. A. Kierstead. Explicit 2-factorisations of the odd graph. Order, 21(1):19–27, 2004.
[Joh04] J. R. Johnson. Long cycles in the middle two layers of the discrete cube. J. Combin. Theory Ser. A,

105(2):255–271, 2004.
[Joh11] J. R. Johnson. An inductive construction for Hamilton cycles in Kneser graphs. Electron. J. Combin.,

18(1):Paper 189, 12, 2011.
[Kar72] R. Karp. Reducibility among combinatorial problems. In Complexity of computer computations (Proc.

Sympos., IBM Thomas J. Watson Res. Center, Yorktown Heights, N.Y., 1972), pages 85–103. Plenum, New
York, 1972.

[Knu11] D. E. Knuth. The Art of Computer Programming. Vol. 4A. Combinatorial Algorithms. Part 1. Addison-
Wesley, Upper Saddle River, NJ, 2011.

[Lov70] L. Lovász. Problem 11. In Combinatorial Structures and Their Applications (Proc. Calgary Internat. Conf.,
Calgary, Alberta, 1969). Gordon and Breach, New York, 1970.

[Lov78] L. Lovász. Kneser’s conjecture, chromatic number, and homotopy. J. Combin. Theory Ser. A, 25(3):319–324,
1978.

[Mat76] M. Mather. The Rugby footballers of Croam. J. Combin. Theory Ser. B, 20(1):62–63, 1976.
[Mat04] J. Matoušek. A combinatorial proof of Kneser’s conjecture. Combinatorica, 24(1):163–170, 2004.
[ML72] G. H. J. Meredith and E. K. Lloyd. The Hamiltonian graphs O4 to O7. In Combinatorics (Proc. Conf.

Combinatorial Math., Math. Inst., Oxford, 1972), pages 229–236. Inst. Math. Appl., Southend-on-Sea, 1972.

17

[ML73] G. H. J. Meredith and E. K. Lloyd. The footballers of Croam. J. Combin. Theory Ser. B, 15:161–166, 1973.
[MN17] T. Mütze and J. Nummenpalo. A constant-time algorithm for middle levels Gray codes. In Proceedings of

the 28th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, pages 2238–2253, 2017.
[MS16] T. Mütze and P. Su. Bipartite Kneser graphs are Hamiltonian. Combinatorica, 2016. In press.

doi:10.1007/s00493-016-3434-6. arXiv:1503.09175.
[MSW17] T. Mütze, C. Standke, and V. Wiechert. A minimum-change version of the Chung-Feller theorem for Dyck

paths. Electron. Notes Discrete Math., 61:901–907, 2017. arXiv:1603.02525. To appear in Eur. J. Combin.
[Müt16] T. Mütze. Proof of the middle levels conjecture. Proc. Lond. Math. Soc., 112(4):677–713, 2016.
[Sav97] C. D. Savage. A survey of combinatorial Gray codes. SIAM Rev., 39(4):605–629, 1997.
[SS04] I. Shields and C. D. Savage. A note on Hamilton cycles in Kneser graphs. Bull. Inst. Combin. Appl., 40:13–

22, 2004.
[Sta99] R. P. Stanley. Enumerative combinatorics. Vol. 2, volume 62 of Cambridge Studies in Advanced Mathematics.

Cambridge University Press, Cambridge, 1999.
[SW17] J. Sawada and A. Williams. A Hamilton path for the sigma-tau problem. To appear at SODA 2018.

http://www.socs.uoguelph.ca/~sawada/papers/sigmaTauPath.pdf (see also arXiv:1307.2549), 2017.
[Zie02] G. M. Ziegler. Generalized Kneser coloring theorems with combinatorial proofs. Invent. Math., 147(3):671–

691, 2002.

18

	1. Introduction
	1.1. Kneser graphs
	1.2. Hamilton cycles in Kneser graphs
	1.3. Bipartite Kneser graphs
	1.4. Our results
	1.5. Gray code algorithms
	1.6. Proof idea
	1.7. Outline of the paper

	2. Preliminaries
	2.1. Bitstrings and Dyck paths
	2.2. Graphs Gk and Gk+
	2.3. Cycle factor Ck in Gk+

	3. Construction of a Hamilton cycle
	4. Proofs of Lemmas 7, 8, and 9
	5. Proofs of Lemmas 10 and 11
	References

