13,171 research outputs found

    Bipartite Kneser graphs are Hamiltonian

    Get PDF
    For integers kβ‰₯1k\geq 1 and nβ‰₯2k+1n\geq 2k+1 the Kneser graph K(n,k)K(n,k) has as vertices all kk-element subsets of [n]:={1,2,…,n}[n]:=\{1,2,\ldots,n\} and an edge between any two vertices (=sets) that are disjoint. The bipartite Kneser graph H(n,k)H(n,k) has as vertices all kk-element and (nβˆ’k)(n-k)-element subsets of [n][n] and an edge between any two vertices where one is a subset of the other. It has long been conjectured that all Kneser graphs and bipartite Kneser graphs except the Petersen graph K(5,2)K(5,2) have a Hamilton cycle. The main contribution of this paper is proving this conjecture for bipartite Kneser graphs H(n,k)H(n,k). We also establish the existence of cycles that visit almost all vertices in Kneser graphs K(n,k)K(n,k) when n=2k+o(k)n=2k+o(k), generalizing and improving upon previous results on this problem

    Maximum Weight Matching via Max-Product Belief Propagation

    Full text link
    Max-product "belief propagation" is an iterative, local, message-passing algorithm for finding the maximum a posteriori (MAP) assignment of a discrete probability distribution specified by a graphical model. Despite the spectacular success of the algorithm in many application areas such as iterative decoding, computer vision and combinatorial optimization which involve graphs with many cycles, theoretical results about both correctness and convergence of the algorithm are known in few cases (Weiss-Freeman Wainwright, Yeddidia-Weiss-Freeman, Richardson-Urbanke}. In this paper we consider the problem of finding the Maximum Weight Matching (MWM) in a weighted complete bipartite graph. We define a probability distribution on the bipartite graph whose MAP assignment corresponds to the MWM. We use the max-product algorithm for finding the MAP of this distribution or equivalently, the MWM on the bipartite graph. Even though the underlying bipartite graph has many short cycles, we find that surprisingly, the max-product algorithm always converges to the correct MAP assignment as long as the MAP assignment is unique. We provide a bound on the number of iterations required by the algorithm and evaluate the computational cost of the algorithm. We find that for a graph of size nn, the computational cost of the algorithm scales as O(n3)O(n^3), which is the same as the computational cost of the best known algorithm. Finally, we establish the precise relation between the max-product algorithm and the celebrated {\em auction} algorithm proposed by Bertsekas. This suggests possible connections between dual algorithm and max-product algorithm for discrete optimization problems.Comment: In the proceedings of the 2005 IEEE International Symposium on Information Theor

    TDMA is Optimal for All-unicast DoF Region of TIM if and only if Topology is Chordal Bipartite

    Get PDF
    The main result of this work is that an orthogonal access scheme such as TDMA achieves the all-unicast degrees of freedom (DoF) region of the topological interference management (TIM) problem if and only if the network topology graph is chordal bipartite, i.e., every cycle that can contain a chord, does contain a chord. The all-unicast DoF region includes the DoF region for any arbitrary choice of a unicast message set, so e.g., the results of Maleki and Jafar on the optimality of orthogonal access for the sum-DoF of one-dimensional convex networks are recovered as a special case. The result is also established for the corresponding topological representation of the index coding problem
    • …
    corecore