1,613 research outputs found

    Long-term behavior of dynamic equilibria in fluid queuing networks

    Get PDF
    A fluid queuing network constitutes one of the simplest models in which to study flow dynamics over a network. In this model we have a single source-sink pair, and each link has a per-time-unit capacity and a transit time. A dynamic equilibrium (or equilibrium flow over time) is a flow pattern over time such that no flow particle has incentives to unilaterally change its path. Although the model has been around for almost 50 years, only recently results regarding existence and characterization of equilibria have been obtained. In particular, the long-term behavior remains poorly understood. Our main result in this paper is to show that, under a natural (and obviously necessary) condition on the queuing capacity, a dynamic equilibrium reaches a steady state (after which queue lengths remain constant) in finite time. Previously, it was not even known that queue lengths would remain bounded. The proof is based on the analysis of a rather nonobvious potential function that turns out to be monotone along the evolution of the equilibrium. Furthermore, we show that the steady state is characterized as an optimal solution of a certain linear program. When this program has a unique solution, which occurs generically, the long-term behavior is completely predictable. On the contrary, if the linear program has multiple solutions, the steady state is more difficult to identify as it depends on the whole temporal evolution of the equilibrium

    Spillback Changes the Long-Term Behavior of Dynamic Equilibria in Fluid Queuing Networks

    Get PDF
    We study the long-term behavior of dynamic traffic equilibria and find that it heavily depends on whether spillback is captured in the traffic model or not. We give an example where no steady state is reached. Although the example consists of a single-commodity instance with constant inflow rate, the Nash flow over time consists of infinitely many phases. This is in contrast to what has been proven for Nash flows over time without spillback [Cominetti et al., 2021; N. Olver et al., 2021]. Additionally, we show that similar phase oscillations as in the Nash flow over time with spillback can be observed in the co-evolutionary transport simulation MATSim. This reaffirms the robustness of the findings as the simulation does (in contrast to Nash flows over time) not lead to exact user equilibra and, moreover, models discrete time steps and vehicles

    On the Price of Anarchy for flows over time

    Get PDF
    Dynamic network flows, or network flows over time, constitute an important model for real-world situations where steady states are unusual, such as urban traffic and the Internet. These applications immediately raise the issue of analyzing dynamic network flows from a game-theoretic perspective. In this paper we study dynamic equilibria in the deterministic fluid queuing model in single-source single-sink networks, arguably the most basic model for flows over time. In the last decade we have witnessed significant developments in the theoretical understanding of the model. However, several fundamental questions remain open. One of the most prominent ones concerns the Price of Anarchy, measured as the worst case ratio between the minimum time required to route a given amount of flow from the source to the sink, and the time a dynamic equilibrium takes to perform the same task. Our main result states that if we could reduce the inflow of the network in a dynamic equilibrium, then the Price of Anarchy is exactly e/(e − 1) ≈ 1.582. This significantly extends a result by Bhaskar, Fleischer, and Anshelevich (SODA 2011). Furthermore, our methods allow to determine that the Price of Anarchy in parallel-link networks is exactly 4/3. Finally, we argue that if a certain very natural monotonicity conjecture holds, the Price of Anarchy in the general case is exactly e/(e − 1)

    Atomic Splittable Flow Over Time Games

    Get PDF
    In an atomic splittable flow over time game, finitely many players route flow dynamically through a network, in which edges are equipped with transit times, specifying the traversing time, and with capacities, restricting flow rates. Infinitesimally small flow particles controlled by the same player arrive at a constant rate at the player's origin and the player's goal is to maximize the flow volume that arrives at the player's destination within a given time horizon. Here, the flow dynamics are described by the deterministic queuing model, i.e., flow of different players merges perfectly, but excessive flow has to wait in a queue in front of the bottle-neck. In order to determine Nash equilibria in such games, the main challenge is to consider suitable definitions for the players' strategies, which depend on the level of information the players receive throughout the game. For the most restricted version, in which the players receive no information on the network state at all, we can show that there is no Nash equilibrium in general, not even for networks with only two edges. However, if the current edge congestions are provided over time, the players can adapt their route choices dynamically. We show that a profile of those strategies always lead to a unique feasible flow over time. Hence, those atomic splittable flow over time games are well-defined. For parallel-edge networks Nash equilibria exists and the total flow arriving in time equals the value of a maximum flow over time leading to a price of anarchy of 1.ISSN:1868-896

    Solutions to the routing problem: towards trustworthy autonomous vehicles

    Get PDF
    • …
    corecore