3 research outputs found

    Offshore Drone Logistics Optimization and Corporate Feasibility

    Get PDF
    Drones can help offshore logistics to improve safety, increase production efficiency, and reduce CO2 emissions. Drones will also be used in the development of new energy solutions on offshore stations. The aim is to see new logistics and support infrastructure, which will complement what we now have on ships and helicopters. Johan Castberg FPSO requires offshore drone logistics operations and for that purpose literature review on the history and types of drones is done to establish a multi-criteria system. Based on that multi-criteria system a drone fleet with different ranges and payload capacities is established. Keeping an eye on the advanced and upcoming drone technologies that can boost the use of drones in offshore logistics different power sources are discussed. To fulfill the objectives of offshore drone logistics in a pre-operational and operational phase different challenges have been discussed in this thesis project that includes type of logistics model in the supply chain, loading and unloading mechanisms with human safety and Environmental parameters, Operational and maintenance regime, and feasibility analysis of the implementation of drone logistics. All these pre-operational and operational phase challenges are discussed in detail and solutions to different challenges are proposed

    Hybrid Vehicle-drone Routing Problem For Pick-up And Delivery Services Mathematical Formulation And Solution Methodology

    Get PDF
    The fast growth of online retail and associated increasing demand for same-day delivery have pushed online retail and delivery companies to develop new paradigms to provide faster, cheaper, and greener delivery services. Considering drones’ recent technological advancements over the past decade, they are increasingly ready to replace conventional truck-based delivery services, especially for the last mile of the trip. Drones have significantly improved in terms of their travel ranges, load-carrying capacity, positioning accuracy, durability, and battery charging rates. Substituting delivery vehicles with drones could result in $50M of annual cost savings for major U.S. service providers. The first objective of this research is to develop a mathematical formulation and efficient solution methodology for the hybrid vehicle-drone routing problem (HVDRP) for pick-up and delivery services. The problem is formulated as a mixed-integer program, which minimizes the vehicle and drone routing cost to serve all customers. The formulation captures the vehicle-drone routing interactions during the drone dispatching and collection processes and accounts for drone operation constraints related to flight range and load carrying capacity limitations. A novel solution methodology is developed which extends the classic Clarke and Wright algorithm to solve the HVDRP. The performance of the developed heuristic is benchmarked against two other heuristics, namely, the vehicle-driven routing heuristic and the drone-driven routing heuristic. Anticipating the potential risk of using drones for delivery services, aviation authorities in the U.S. and abroad have mandated necessary regulatory rules to ensure safe operations. The U.S. Federal Aviation Administration (FAA) is examining the feasibility of drone flights in restricted airspace for product delivery, requiring drones to fly at or below 400-feet and to stay within the pilot’s line of sight (LS). Therefore, a second objective of this research is considered to develop a modeling framework for the integrated vehicle-drone routing problem for pick-up and delivery services considering the regulatory rule requiring all drone flights to stay within the pilot’s line of sight (LS). A mixed integer program (MIP) and an efficient solution methodology were developed for the problem. The solution determines the optimal vehicle and drone routes to serve all customers without violating the LS rule such that the total routing cost of the integrated system is minimized. Two different heuristics are developed to solve the problem, which extends the Clarke and Wright Algorithm to cover the multimodality aspects of the problem and to satisfy the LS rule. The first heuristic implements a comprehensive multimodal cost saving search to construct the most efficient integrated vehicle-drone routes. The second heuristic is a light version of the first heuristic as it adopts a vehicle-driven cost saving search. Several experiments are conducted to examine the performance of the developed methodologies using hypothetical grid networks of different sizes. The capability of the developed model in answering a wide variety of questions related to the planning of the vehicle-drone delivery system is illustrated. In addition, a case study is presented in which the developed methodology is applied to provide pick-up and delivery services in the downtown area of the City of Dallas. The results show that mandating the LS rule could double the overall system operation cost especially in dense urban areas with LS obstructions

    A framework for the implementation of drones in German automotive OEM logistics operations

    Get PDF
    Intralogistics operations in automotive OEMs increasingly confront problems of overcomplexity caused by a customer-centred production that requires customisation and, thus, high product variability, short-notice changes in orders and the handling of an overwhelming number of parts. To alleviate the pressure on intralogistics without sacrificing performance objectives, the speed and flexibility of logistical operations have to be increased. One approach to this is to utilise three-dimensional space through drone technology. This doctoral thesis aims at establishing a framework for implementing aerial drones in automotive OEM logistic operations. As of yet, there is no research on implementing drones in automotive OEM logistic operations. To contribute to filling this gap, this thesis develops a framework for Drone Implementation in Automotive Logistics Operations (DIALOOP) that allows for a close interaction between the strategic and the operative level and can lead automotive companies through a decision and selection process regarding drone technology. A preliminary version of the framework was developed on a theoretical basis and was then revised using qualitative-empirical data from semi-structured interviews with two groups of experts, i.e. drone experts and automotive experts. The drone expert interviews contributed a current overview of drone capabilities. The automotive experts interview were used to identify intralogistics operations in which drones can be implemented along with the performance measures that can be improved by drone usage. Furthermore, all interviews explored developments and changes with a foreseeable influence on drone implementation. The revised framework was then validated using participant validation interviews with automotive experts. The finalised framework defines a step-by-step process leading from strategic decisions and considerations over the identification of logistics processes suitable for drone implementation and the relevant performance measures to the choice of appropriate drone types based on a drone classification specifically developed in this thesis for an automotive context
    corecore