47,035 research outputs found

    Weighted Logics for Nested Words and Algebraic Formal Power Series

    Full text link
    Nested words, a model for recursive programs proposed by Alur and Madhusudan, have recently gained much interest. In this paper we introduce quantitative extensions and study nested word series which assign to nested words elements of a semiring. We show that regular nested word series coincide with series definable in weighted logics as introduced by Droste and Gastin. For this we establish a connection between nested words and the free bisemigroup. Applying our result, we obtain characterizations of algebraic formal power series in terms of weighted logics. This generalizes results of Lautemann, Schwentick and Therien on context-free languages

    Decidable Exponentials in Nonassociative Noncommutative Linear Logic

    Full text link
    The use of exponentials in linear logic greatly enhances its expressive power. In this paper we focus on nonassociative noncommutative multiplicative linear logic, and systematically explore modal axioms K, T, and 4 as well as the structural rules of contraction and weakening. We give sequent systems for each subset of these axioms; these enjoy cut elimination and have analogues in more structural logics. We then appeal to work of Bulinska extending work of Buszkowski to show that several of these logics are PTIME decidable and generate context free languages as categorial grammars. This contrasts associative systems where similar logics are known to generate all recursively enumerable languages, and are thus in particular undecidable

    Extended Computation Tree Logic

    Full text link
    We introduce a generic extension of the popular branching-time logic CTL which refines the temporal until and release operators with formal languages. For instance, a language may determine the moments along a path that an until property may be fulfilled. We consider several classes of languages leading to logics with different expressive power and complexity, whose importance is motivated by their use in model checking, synthesis, abstract interpretation, etc. We show that even with context-free languages on the until operator the logic still allows for polynomial time model-checking despite the significant increase in expressive power. This makes the logic a promising candidate for applications in verification. In addition, we analyse the complexity of satisfiability and compare the expressive power of these logics to CTL* and extensions of PDL

    Non-Rigid Designators in Epistemic and Temporal Free Description Logics (Extended Version)

    Full text link
    Definite descriptions, such as 'the smallest planet in the Solar System', have been recently recognised as semantically transparent devices for object identification in knowledge representation formalisms. Along with individual names, they have been introduced also in the context of description logic languages, enriching the expressivity of standard nominal constructors. Moreover, in the first-order modal logic literature, definite descriptions have been widely investigated for their non-rigid behaviour, which allows them to denote different objects at different states. In this direction, we introduce epistemic and temporal extensions of standard description logics, with nominals and the universal role, additionally equipped with definite descriptions constructors. Regarding names and descriptions, in these languages we allow for: possible lack of denotation, ensured by partial models, coming from free logic semantics as a generalisation of the classical ones; and non-rigid designation features, obtained by assigning to terms distinct values across states, as opposed to the standard rigidity condition on individual expressions. In the absence of the rigid designator assumption, we show that the satisfiability problem for epistemic free description logics is NExpTime-complete, while satisfiability for temporal free description logics over linear time structures is undecidable

    Deciding regular grammar logics with converse through first-order logic

    Full text link
    We provide a simple translation of the satisfiability problem for regular grammar logics with converse into GF2, which is the intersection of the guarded fragment and the 2-variable fragment of first-order logic. This translation is theoretically interesting because it translates modal logics with certain frame conditions into first-order logic, without explicitly expressing the frame conditions. A consequence of the translation is that the general satisfiability problem for regular grammar logics with converse is in EXPTIME. This extends a previous result of the first author for grammar logics without converse. Using the same method, we show how some other modal logics can be naturally translated into GF2, including nominal tense logics and intuitionistic logic. In our view, the results in this paper show that the natural first-order fragment corresponding to regular grammar logics is simply GF2 without extra machinery such as fixed point-operators.Comment: 34 page

    On Second-Order Monadic Monoidal and Groupoidal Quantifiers

    Get PDF
    We study logics defined in terms of second-order monadic monoidal and groupoidal quantifiers. These are generalized quantifiers defined by monoid and groupoid word-problems, equivalently, by regular and context-free languages. We give a computational classification of the expressive power of these logics over strings with varying built-in predicates. In particular, we show that ATIME(n) can be logically characterized in terms of second-order monadic monoidal quantifiers

    Logics for Unranked Trees: An Overview

    Get PDF
    Labeled unranked trees are used as a model of XML documents, and logical languages for them have been studied actively over the past several years. Such logics have different purposes: some are better suited for extracting data, some for expressing navigational properties, and some make it easy to relate complex properties of trees to the existence of tree automata for those properties. Furthermore, logics differ significantly in their model-checking properties, their automata models, and their behavior on ordered and unordered trees. In this paper we present a survey of logics for unranked trees

    Wreath Products of Forest Algebras, with Applications to Tree Logics

    Full text link
    We use the recently developed theory of forest algebras to find algebraic characterizations of the languages of unranked trees and forests definable in various logics. These include the temporal logics CTL and EF, and first-order logic over the ancestor relation. While the characterizations are in general non-effective, we are able to use them to formulate necessary conditions for definability and provide new proofs that a number of languages are not definable in these logics
    • 

    corecore