
First-order Logic Definability of Free Languages

Violetta Lonati1, Dino Mandrioli2, Federica Panella2, Matteo Pradella2

1 DI - Università degli Studi di Milano
lonati@di.unimi.it

2 DEIB - Politecnico di Milano
{dino.mandrioli, federica.panella, matteo.pradella}@polimi.it

Abstract. Operator Precedence Grammars (OPGs) define a deterministic class
of context-free languages, which extend input-driven languages and still enjoy
many properties: they are closed w.r.t. Boolean operations, concatenation and
Kleene star; the emptiness problem is decidable; they are recognized by a suitable
model of pushdown automaton; they can be characterized in terms of a monadic
second-order logic. Also, they admit efficient parallel parsing.
In this paper we introduce a subclass of OPGs, namely Free Grammars (FrGs);
we prove some of its basic properties, and that, for each such grammar G, a first-
order logic formula ψ can effectively be built so that L(G) is the set of all and
only strings satisfying ψ.
FrGs were originally introduced for grammatical inference of programming lan-
guages. Our result can naturally boost their applicability; to this end, a tool is
made freely available for the semiautomatic construction of FrGs.

1 Introduction

Operator Precedence Grammars (OPGs) and their generated languages, Operator Prece-
dence Languages (OPLs), have been invented by R. Floyd half a century ago with the
purpose of building efficient deterministic parsers. Although they are still in use in this
peculiar application field, thanks to their simplicity and the efficiency of their parsers
[13], their theoretical investigation has been interrupted for a long time and only re-
cently we resumed it in a long term research plan [8]. This led to discover many im-
portant properties of this class of languages which can be exploited in different modern
applications. In fact, OPLs enable efficient parallel parsing algorithms [4] and are the
largest family known to us that is closed under all fundamental operations and is char-
acterized in terms of a monadic second order (MSO) logic, besides of course enjoy-
ing decidability of the emptiness problem; in particular, it strictly includes the classes
of regular languages, input-driven, alias Visibly Pushdown Languages [3], and other
parenthesis-like languages [19]. These properties entitle them to support verification al-
gorithms for many systems modeled either through OPGs or through their correspond-
ing automata, Operator Precedence Automata (OPAs) [17].

Application of MSO logic, however, is in general considered of intractable com-
plexity; thus, the literature exhibits a fairly wide variety of language subclasses that are
characterized in terms of simpler logics such as fragments of first-order logics or tem-
poral ones. For instance the equivalence between star-free regular languages and Linear

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Politecnico di Milano

https://core.ac.uk/display/55252591?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Temporal Logic (LTL) is proved in [15]; [2] characterizes classes of VPLs by means of
various first-order and temporal logics. [16], instead, presents a logical characterization
of the class of context-free languages by means of a first-order logic, although extended
with a quantification over matchings.

In this paper we move a first step towards accomplishing a similar job with OPLs.
We consider free grammars (FrGs) and languages (FrLs), which have been introduced
with the main propose of supporting grammar inference [10,9] for programming lan-
guages. Grammatical inference (or induction) is an active and rich field of research,
were various kinds of machine learning techniques are employed to infer a formal gram-
mar or a variant of finite state machine from a set of observations, thus constructing a
model which accounts for the characteristics of the observed objects. We refer the in-
terested reader to the recent comprehensive works [14,11].

FrGs suffer from large size since their nonterminal alphabet is based on the power
set of their terminal one; however they can be easily inferred on the basis of positive
samples only, and can be minimized (by losing the property of being free) by applying
classical algorithms [19,5]. In this paper we show that they are well suited to describe
various language types, not only in the realm of programming languages. Furthermore,
they can be used to define a sort of “superlanguage”, possibly inferred in the limit from a
set of strings of the user’s desired language, and that can be further refined by imposing
a few restricting properties in terms of first-order formulae.

The main result of this paper is that FrL strings satisfy formulae written in a first-
order logic that restricts the MSO one defined for general OPLs; the structure over
which such formulae are interpreted is the same as the one defined for general OPLs
which required considerable generalization w.r.t. other previous results referring to sim-
pler languages such as regular or input-driven ones [18].

In Section 2 we resume the basic definitions of OPGs and FrGs and languages and
prove their basic properties. In Section 3 we provide a few simple examples of FrLs with
the purpose of showing their usefulness in describing several types of languages, and
we state some of their properties. In Section 4 we focus on their logic characterization.
Finally, in Section 5 we envisage further steps in this ongoing research.

2 Preliminaries

A context-free (CF) grammar is a 4-tuple G = (N, Σ, P, S), where N is the nonterminal
alphabet, Σ is the terminal one, P the rule (or production) set, and S ⊆ N the set of
axioms3. The empty string is denoted ε.

The following naming convention will be adopted, unless otherwise specified: low-
ercase Latin letters a, b, . . . denote terminal characters; uppercase Latin letters A, B, . . .
denote nonterminal characters; letters u, v, . . . denote terminal strings; and Greek letters
α, β, . . . denote strings over Σ ∪ N. The strings may be empty, unless stated otherwise.

An empty rule has ε as the right hand side (r.h.s.). A renaming rule has one nonter-
minal as r.h.s. A grammar is reduced if every rule can be used to generate some string

3 This less usual but equivalent definition of axioms as a set has been adopted for parenthesis
languages [19] and other input-driven languages; we chose it for this paper to simplify some
notations and constructions.

2

in Σ∗. It is invertible if no two rules have identical r.h.s. The direct derivation relation
is denoted by ⇒ and its reflexive transitive closure, the derivation relation, is denoted

by
∗
⇒. If α

∗
⇒ β in h steps, we write α

h
⇒ β.

A rule is in operator form if its r.h.s. has no adjacent nonterminals; an operator
grammar (OG) contains just such rules. Any CF grammar admits an equivalent OG.

Let G be an OG and α be a string over (N ∪ Σ)∗: its left and right terminal sets are

L(α) =

{a ∈ Σ | A

∗
⇒ Baα} if α = A

{a} if α = aβ
L(A) ∪ {a} if α = Aaβ

R(α) =

{a ∈ Σ | A

∗
⇒ αaB} if α = A

{a} if α = βa
R(A) ∪ {a} if α = βaA

where A ∈ N, B ∈ N ∪ {ε}, a ∈ Σ, β ∈ (N ∪ Σ)∗. For an OG G, let α, β range over
(N ∪ Σ)∗ and a, b ∈ Σ. Three binary operator precedence (OP) relations are defined:

equal in precedence: a � b ⇐⇒ ∃ A→ αaBbβ, B ∈ N ∪ {ε}

takes precedence: a m b ⇐⇒ ∃ A→ αDbβ,D ∈ N and a ∈ R(D)
yields precedence: a l b ⇐⇒ ∃ A→ αaDβ,D ∈ N and b ∈ L(D)

For an OG G, the operator precedence matrix (OPM) M = OPM(G) is a |Σ | ×
|Σ | array that, for each ordered pair (a, b), stores the set Mab of OP relations holding
between a and b. If Mab = {◦}, with ◦ ∈ {l,�,m}, we write a ◦ b.

Definition 1 (Operator precedence grammar and language). An OG G is an opera-
tor precedence (OPG) or Floyd grammar if, and only if, M = OPM(G) is a conflict-free
matrix, i.e., ∀a, b, |Mab| ≤ 1. An operator precedence language (OPL) is a language
generated by an OPG.

Definition 2 (Fischer Normal Form [12]). An OPG is in Fischer normal form (FNF)
iff it is invertible, has no empty rule except possibly A → ε, where A is an axiom not
used elsewhere, and no renaming rules.

Previous literature [8,17] assumed that all precedence matrices of OPLs are �-cycle
free, i.e., they do not contain sequences of relations a1=̇a2=̇ . . . =̇a1. In the case of OPGs
this prevents the risk of r.h.s. of unbounded length [9], but could be replaced by the
weaker restriction of production’s r.h.s. of bounded length, or could be removed at all
by allowing such unbounded forms of grammars –e.g. with regular expressions as r.h.s.
In our experience, such assumption helps to simplify notations and some technicalities
of proofs; moreover we found that its impact in practical examples is minimal.4 In
this paper we accept a minimal loss of generation power and assume the simplifying
assumption of �-acyclicity.

Definition 3 (Free Grammar and Language). Let G be an OPG with no renaming
rules and no empty rule except possibly C → ε, where C is an axiom not used elsewhere;
G is a free grammar (FrG) iff the two following conditions hold

4 An example language that cannot be generated with an �-acyclic OPM is the following: L =

{an(bc)n
| n ≥ 0} ∪ {bn(ca)n | n ≥ 0} ∪ {cn(ab)n | n ≥ 0}

3

– for every production A→ α, with α , ε, L(A) = L(α) and R(A) = R(α);
– for every nonterminals A, B, L(A) = L(B) and R(A) = R(B) implies A = B.

A language generated by a FrG is a free language (FrL).

Notice that, by definition, a FrG is in FNF. Also, each nonterminal A is uniquely
identified by the pair of sets L(A),R(A); thus N is isomorphic to ℘(Σ) × ℘(Σ). Indeed,
it is customary to use ℘(Σ) × ℘(Σ) as the nonterminal alphabet of a free grammar.

FrLs can also be defined in terms of a suitable automata family and extended to
ω-languages in a similar way as it has been done for general OPLs [17,21].

Given an OPM M, the maxgrammar associated with M is the FrG that contains the
productions that induce all and only the relations in M.

Notice that the maxgrammar associated with a complete OPM (i.e., an OPM with
no empty case) generates the language Σ∗. The maxgrammar associated with an OPM
is unique thanks to the hypothesis of �-acyclicity or, in general, if we require that the
length of the r.h.s. of the rules is a priori bounded. Also, the set of FrGs with a given
OPM is a lattice whose top element is the maxgrammar associated with the matrix [9].

3 Examples and first properties of free languages

In this section we investigate the generative power of free grammars: the following ex-
amples, among others not reported here for brevity, show that they are well suited to
formalize some typical programming language features and various types of system be-
havior; we will also show that the class of FrLs is not comparable with other subclasses
of OPLs such as, e.g., VPLs.

Furthermore, the examples below show that FrGs are not intended to be built by
hand; being driven by the powerset of Σ, both N and P may suffer from combina-
torial explosion. However, according to their original motivation to support grammar
inference, they are well suited to be easily built by some automatic device: in fact the
grammars of the following examples have been automatically generated.5

Example 1. The FrG G depicted in Figure 1 with its OPM generates unparenthesized
arithmetic expressions with the usual precedences of × w.r.t. +, which instead cannot
be expressed as a VPL [8]. This grammar is obtained from the maxgrammar associated
with the OPM by taking only those nonterminals that have letter n in both left and right
sets. By this way we guarantee that all strings generated by the grammar begin and end
with an n, and are thus well formed. All nonterminals of the grammar are axioms too.

Extending the above grammar to generate also parenthesized arithmetic expressions
is a conceptually easy exercise since we only need new nonterminals, and corresponding
rules, including L and M in their left and right terminal sets, respectively. The correspond-
ing FrG has 22 nonterminals and 168 rules, and it can be found among the examples
available in the Flup package [1].

5 The grammars presented here have been produced by the Flup tool (the whole package, which
includes various utilities for the general class of OPLs, is available at [1]). In the future we
plan to couple Flup with an additional tool that minimizes the original grammar by applying
the classical procedure introduced in [19].

4

〈{n}, {n}〉 → n
〈{+,×, n}, {+, n}〉 → 〈{×, n}, {×, n}〉 + 〈{n}, {n}〉
〈{+, n}, {+, n}〉 → 〈{+, n}, {+,×, n}〉 + 〈{n}, {n}〉

〈{+, n}, {+,×, n}〉 → 〈{+, n}, {+, n}〉 + 〈{×, n}, {×, n}〉
〈{+,×, n}, {+,×, n}〉 → 〈{+,×, n}, {+,×, n}〉 + 〈{×, n}, {×, n}〉

〈{×, n}, {×, n}〉 → 〈{×, n}, {×, n}〉 × 〈{n}, {n}〉
〈{+, n}, {+,×, n}〉 → 〈{+, n}, {+,×, n}〉 + 〈{×, n}, {×, n}〉
〈{+,×, n}, {+, n}〉 → 〈{+,×, n}, {+, n}〉 + 〈{n}, {n}〉

〈{+,×, n}, {+,×, n}〉 → 〈{+,×, n}, {+, n}〉 + 〈{×, n}, {×, n}〉
〈{+,×, n}, {+,×, n}〉 → 〈{×, n}, {×, n}〉 + 〈{×, n}, {×, n}〉
〈{+,×, n}, {+, n}〉 → 〈{+,×, n}, {+,×, n}〉 + 〈{n}, {n}〉
〈{+, n}, {+, n}〉 → 〈{n}, {n}〉 + 〈{n}, {n}〉

〈{+, n}, {+,×, n}〉 → 〈{n}, {n}〉 + 〈{×, n}, {×, n}〉
〈{×, n}, {×, n}〉 → 〈{n}, {n}〉 × 〈{n}, {n}〉
〈{+, n}, {+, n}〉 → 〈{+, n}, {+, n}〉 + 〈{n}, {n}〉

n + ×

n m m

+ l m l

× l m m

Fig. 1. A FrG for unparenthesized arithmetic expressions and its OPM.

Example 2. Consider a simplified version of software system that serves requests of
operations issued by various users but subject to possible asynchronous interrupts.

We model the behavior of the system by introducing an alphabet with a pair of sym-
bols call, ret, to describe the request and completion of a user’s operation, and symbol
int, denoting the occurrence of the interrupt. Under normal behavior calls and rets must
be matched according to the normal LIFO policy; however, if an interrupt occurs when
some calls are pending, they are reset without waiting for the corresponding rets; pos-
sible subsequent rets remain therefore unmatched. Unmatched returns can occur only
if previously some interrupt flushed away all unmatched calls.

A FrG that generates sequences of operations and occurrences of interrupts con-
sistent with the above informal description has the OPM displayed in Figure 2 and
counts 21 nonterminals and 174 rules. It has been built starting from the maxgram-
mar associated with the OPM by taking as nonterminals only 〈{ret}, {ret}〉 and those
that do not contain ret in their left set. The axioms are all nonterminals A ∈ (℘(Σ) ×
℘(Σ)) \ {〈{ret}, {ret}〉}. Nonterminal 〈{ret}, {ret}〉 is necessary to generate sequences of
unmatched returns; the constraint on the other nonterminals guarantees that a sequence
of rets is either matched by corresponding previous calls or is unmatched but preceded
by an interrupt. This FrG too can be found in the examples in the Flup package.

The resulting grammar can be easily modified to deal with more complex policies,
e.g., different levels of interrupt, but with a possible consequent size increase.

call ret int
call l � m

ret m m m

int m l l

Fig. 2. The OPM of Example 2.

5

All the FrGs in the above examples have been built by applying a top-down ap-
proach, starting from the maxgrammar associated with the OPM and “pruning” nonter-
minals and productions that would generate undesired strings. This approach comple-
ments the bottom up technique of traditional grammar inference, which builds a FrG
generating a desired language by abstracting away from a given sample of language
strings (it exploits the distinguishing property of FrGs that they can be inferred in the
limit on the basis of a positive sample only [10]).

The typical canonical form of FrGs makes also easy the application of the classical
minimization procedure that extends to structure grammars the minimization of finite
state machines [19,5].

The above examples also help comparing the generative power of FrLs with other
subclasses of OPLs.

Proposition 1. The class of FrLs is incomparable with the classes of regular languages
and VPLs.

Proof. The language described in Example 2 is a FrL but is not regular, due to the
necessity to match corresponding call and ret symbols, nor a VPL: although, in fact, it
retains the rationale of VPLs in that it allows for unmatched “parenthesis-like” symbols
(calls and returns in this case), it generalizes this VPLs feature in that such unmatched
symbols can occur even inside a matching pair, which is impossible in VPLs. On the
other hand, it is known that FrGs generate only non-counting languages [7], whereas
regular languages and VPLs, which strictly contain regular ones, can be counting [20].

ut

Proposition 2. FrLs (with a fixed OPM) are closed w.r.t. intersection but not w.r.t. con-
catenation, complement, union and Kleene *.

Proof. Closure under intersection, already stated in [7], follows from the fact that, given
an OPM, the parsing of any string w is the same for any FrG (all FrG’s nonterminal
alphabets are pairs of subsets of Σ); it follows that L(G1) ∩ L(G2) = L(G1 ∩G2) where
G1∩G2 denotes the grammar whose production set is the intersection of the production
sets of G1 and G2 (possibly “cleaned up” of the useless productions) and is a FrG.

To prove that FrLs are not closed w.r.t. concatenation, consider language L = {a}
with a l a. L is a FrL but L · L is not: to generate # l a l a m # a FrG needs the
productions 〈{a}, {a}〉 → a and 〈{a}, {a}〉 → a〈{a}, {a}〉 which generate a+. For the same
reason ¬L = {an | n > 1∨n = 0} is not a FrL; thus FrLs are not closed w.r.t. complement.

Consider the FrGs G1 and G2 below (both grammars have axiom 〈{a, b}, {b}〉):

G1 :
〈{a, b}, {b}〉 → 〈{a, b}, {b}〉 b | 〈{a}, {a}〉 b
〈{a}, {a}〉 → a

G2 :
〈{a, b}, {b}〉 → 〈{a}, {a}〉 b
〈{a}, {a}〉 → a | 〈{a}, {a}〉 a

which generate, respectively, L1 = ab+ and L2 = a+b: all productions of G1 and G2 are
necessary to generate all strings of L1 ∪ L2 but the union of (productions of) G1 and G2
generates strings a+b+, which do not belong to L1 ∪ L2.

6

Finally, consider the FrG G:

〈{a, b}, {b}〉 → 〈{a, b}, {a}〉 b

〈{a, b}, {a}〉 → 〈{a, b}, {b}〉 a | 〈{b}, {b}〉 a

〈{b}, {b}〉 → b

with axiom 〈{a, b}, {b}〉, which generates L = (ba)+b (with a m b, b m b and b m a).
To generate a string in L∗ we need to generate two consecutive bs, corresponding re-
spectively to the last and the first character of two consecutive words of L; this can be
obtained only by means of a new rule for a nonterminal with right terminal set {b}, such
as 〈{a, b}, {b}〉 → 〈{a, b}, {b}〉b or the rule 〈{b}, {b}〉 → 〈{b}, {b}〉b, which however imply
the generation also of strings containing any number of consecutive b, which do not
belong to L∗. ut

Ultimately, the above examples show that on the one hand FrGs can model the es-
sential features of various systems but, on the other hand, they exhibit some unexpected
limits in generative power which are not suffered even by regular languages. These lim-
its must be ascribed to their distinguishing property of being inferrable in the limit by
using only a set of positive strings (in fact the class of FrLs is not closed under comple-
ment). Thus they are better suited to define a sort of “skeleton language” to be refined
by superimposing further constraints specified by means of some complementary for-
malism. A natural way to pursue such an approach is, e.g., to “intersect” them with
some finite state machine. In this paper, instead, we will exploit the fact that FrLs can
be defined in terms of first-order logic sentences, but first-order logic can also be used
to define further, even more sophisticated, constraints on these languages.

4 First-order logic definability of free languages

The traditional MSO logic characterization of regular languages has been recently ex-
tended to larger classes such as VPLs [3] and OPLs [18]. In case of VPLs the syntax of
MSO logic has been extended with a new binary predicate , which is interpreted as
a relation between positions of characters in the strings, such that x y when at po-
sitions x and y two matching parentheses occur (with a minor exception for unmatched
open or closed parentheses for which, by convention, if they occur at position x, then
x ∞ or ∞ x). In case of OPLs a more sophisticated relation has been neces-
sary due to the fact that, as we will see, there is no one-to-one correspondence between
open and closed parentheses (calls and returns in VPLs terminology). Then, due to the
high complexity of MSO logic, various special cases of language families have been
considered with the goal of characterizing them by means of simpler logics [2].

In this section we show that FrLs can be defined in terms of a FO logic rather than a
MSO one. The converse property however does not hold: by Proposition 2, in fact, the
class of FrLs is not closed under complement; hence, there are languages that can be
defined in terms of FO logic but are not FrLs. On the other hand FO formulae can be
used to refine FrLs by superimposing further properties.

The key difference between the traditional MSO language formulation and the new
FO one is that in the MSO formulation each position in the string (over which the

7

MSO logic formula is interpreted) may be associated with several states of an automa-
ton recognizing the language defined by the MSO formula, i.e., to several second-order
variables denoting subsets of positions according to Büchi’s approach; in our FO for-
mulation instead, we associate positions with the left and right terminal sets of the
nonterminal of a FrG that is the root of the subtree whose leftmost and rightmost leaves
are in the given positions. Thanks to the fact that in FrGs the number of possible non-
terminals is a priori bounded and they are univocally identified by their left and right
terminal sets, we can express such association by means of first-order formulae, without
the need to resort to second-order variables denoting sets of positions.

We first introduce some preliminary notation necessary to define the structure over
which FO formulae are interpreted; then, we define the syntax of our FO logic and show
how its formulae are interpreted; finally we prove that, for every FrG, a FO sentence
can be automatically built that is satisfied by all and only the strings generated by the
grammar.

Preliminarily, we introduce a special symbol # not in Σ to mark the beginning and
the end of any string. The precedence relations in the OPM are implicitly extended
to include #: the initial # can only yield precedence, and other symbols can only take
precedence over the ending #.

Definition 4 (Operator precedence alphabet [17]). An operator precedence (OP) al-
phabet is a pair (Σ,M) where Σ is an alphabet and M is a conflict-free operator prece-
dence matrix, i.e. a |Σ ∪ {#}|2 array that associates at most one of the operator prece-
dence relations: �, l or m with each ordered pair (a, b).

The operator precedence alphabet determines the “structure” of a string, as formal-
ized by the following notion of chains.

Definition 5 (Chains [17]). Let (Σ,M) be an operator precedence alphabet.

– A simple chain is a word a0a1a2 . . . anan+1, written as a0 [a1a2 . . . an]an+1 , such that:
a0, an+1 ∈ Σ ∪ {#}, ai ∈ Σ for every i : 1 ≤ i ≤ n, Ma0an+1 , ∅, and a0 l a1 � a2 �
· · · � an−1 � an m an+1.

– A composed chain is a word a0x0a1x1a2 . . . anxnan+1, written a0 [x0a1x1a2 . . . anxn]an+1 ,
with xi ∈ Σ

∗, and where a0 [a1a2 . . . an]an+1 is a simple chain, and either xi = ε or
ai [xi]ai+1 is a chain (simple or composed), for every i : 0 ≤ i ≤ n.

– The body of a chain a[x]b, simple or composed, is the word x. The depth d(x)
of the body x is defined recursively: d(x) = 1 if the chain is simple, whereas
d(x0a1x1 . . . anxn) = 1 + maxi d(xi). The depth of a chain is the depth of its body.

– A word w ∈ Σ∗ is compatible with M iff the two following conditions hold:
• for each pair of letters c, d, consecutive in w, Mcd , ∅
• for each factor (substring) x of #w# such that x = a0x0a1x1a2 . . . anxnan+1 and

a0 [x0a1x1a2 . . . anxn]an+1 is a chain (simple or composed), then Ma0an+1 , ∅.

If an OPG contains the rule A→ a1a2 . . . an and for some a0, an+1, a0la1, anman+1,
then a0 [a1a2 . . . an]an+1 is a simple chain. Similarly, if there is a rule A→ B0a1B1a2 . . . anBn

and Bi
∗
⇒ xi for every i, a0 l a1, an m an+1 and a0 [x0]a1 , an [xn]an+1 are chains, then

a0 [x0a1x1a2 . . . anxn]an+1 is a composed chain.
Next, we introduce the syntax of our FO logic.

8

Definition 6 (First-order Logic over (Σ,M)). Let (Σ,M) be an OP alphabet, and let
V be a countable infinite set of first-order variables (denoted by x, y, . . .). The FOΣ,M

(first-order logic over (Σ,M)) is defined by the following syntax:

ϕ := c(x) | x ≤ y | xy y | ¬ϕ | ϕ ∨ ϕ | ∃x.ϕ

where c ∈ Σ ∪ {#}, x, y ∈ V.

A FOΣ,M formula is interpreted over a string w ∈ Σ∗ compatible with M, with
respect to assignments ν : V→ {0, 1, . . . , |w| + 1} in the following way.

– w |= c(x) iff #w# = w1cw2 and |w1| = ν(x).
– w |= x ≤ y iff ν(x) ≤ ν(y).
– w |= x y y iff #w# = w1aw2bw3, |w1| = ν(x), |w1aw2| = ν(y), and aw2b is a chain

a[w2]b.
– w |= ¬ϕ iff w 6|= ϕ.
– w |= ϕ1 ∨ ϕ2 iff w |= ϕ1 or w |= ϕ2.
– w |= ∃x.ϕ iff w′ |= ϕ, for some ν′ with ν′(y) = ν(y) for all y ∈ V \ {x}.

To improve readability, we use some standard abbreviations in formulae, such as
x + 1, x − 1, x = y, x , y, x < y.

A sentence is a formula without free variables. The language of all strings w ∈ Σ∗

such that w |= ϕ is denoted by L(ϕ):

L(ϕ) = {w ∈ Σ∗ | w |= ϕ}.

The distinguishing feature of FOΣ,M w.r.t. the traditional FO logic is given by the in-
troduction of predicate y: for each pair of positions x and y in a string, x y y is
used to denote that positions x and y “embrace” a chain. The relation formalized by this
predicate resembles the defined for VPLs but exhibits two significant differences:

– it is not one-to-one, since a position x can in be in relation x y y with more than
one y and vice versa;

– is not defined on the positions where the leftmost and rightmost leaves of a subtree
of the syntactic tree of the string occur (which are the positions of calls and returns
in VPL terminology) but on the positions of the context of any subtree, i.e. of a chain.

Example 3. Consider the OP alphabet given in Figure 3. In all strings compatible with
M, such that #[w]# is a chain, all parentheses are well-matched.

The sentence in the same figure restricts the set of strings compatible with the OPM
to the language where parentheses are used only when they are needed (i.e., to invert
the natural precedence between × and +).

We now state our main result.

Theorem 1. Let G = 〈N, Σ, P, S 〉 be a FrG: then a FOΣ,M formula ψ can be effectively
built such that w ∈ L(G) iff w |= ψ.

9

+ × L M n #
+ m l l m l m
× m m l m l m
L l l l � l
M m m m m
n m m m m
l l l l �

∀x∀y

xy y ∧
L(x + 1) ∧
M(y − 1)

⇒

(×(x) ∨ ×(y))
∧

∃z

x + 1 < z < y − 1 ∧ +(z) ∧

¬∃u∃v

 x + 1 < u < z ∧ L(u)∧
z < v < y − 1 ∧ M(v)∧

u − 1y v + 1

Fig. 3. An OP alphabet (Σ,M) for arithmetic expressions (left), and a FOΣ,M sentence (right).

Proof. We first introduce some shortcut notation to make formulae more compact and
understandable.

When considering a chain a[w]b we assume w = w0a1w1 . . . a`w`, with a[a1a2 . . . a`]b

being a simple chain (any wi may be empty). We denote by si the position of symbol ai,
for i = 1, 2, . . . , ` and set a0 = a, s0 = 0, a`+1 = b, and s`+1 = |w| + 1.

Notation TreeC is defined as follows (n > 1):

TreeC(x0, x1, . . . , xn, xn+1) := x0 y xn+1 ∧
∧

0≤i≤n

xi + 1 = xi+1
∨

xi y xi+1

∧
∧

i+1< j≤n

¬(xi y x j)

If x0 y xn+1, there exist (unique) x0, x1, . . . , xn, xn+1 such that TreeC(x0, x1, . . . , xn, xn+1)
holds: in particular, x0 l x1, xi � xi+1 for 1 ≤ i ≤ n − 1, and xn m xn+1.

Let w be a chain body w = w0a1w1a2 . . . a`w`: if every wi is empty (the chain
is simple), then 0 y ` + 1 and TreeC(0, 1, 2, . . . , `, ` + 1) holds; if w is the body of a
composed chain, then 0y |w|+1 and TreeC(s0, s1, s2, . . . , s`, s`+1) holds (see Figure 4).

a0 w0 a1 w1 a2 . . . a`−1 w`−1 a` w` a`+1

s0 s1 s2 s`−1 s` s`+1

Fig. 4. Chain a0 [w0a1w1a2 . . . a`w`]a`+1 , for
which TreeC(s0, s1, s2, . . . , s`, s`+1) holds.

A

a

x

B

C

D

E

d F

. . .

b

e

d

c

y

. . .

Fig. 5. Pair of positions x, y for which
L{d,e}(x, y) holds.

The similar notation Tree is instead defined as follows.

Tree(x,u, v, y) := xy y ∧

 (x + 1 = u ∨ xy u) ∧ ¬∃t(u < t < y ∧ xy t)
∧

(v + 1 = y ∨ vy y) ∧ ¬∃t(x < t < v ∧ ty y)

10

This notation represents a “projection” of TreeC over positions x0, x1, xn and xn+1
(here corresponding to x,u, v, y), and is used when we do not need to refer to positions
x2, . . . , xn−1 within a chain.

Also, for every A ⊆ Σ, we define notations:

LA(x, y) :=

∀u, v, z

u ≤ v < z ≤ y ∧ Tree(x,u, v, z)⇒
∨
a∈A

a(u)

∧∧

a∈A

∃ u, v, z (u ≤ v < z ≤ y ∧ Tree(x,u, v, z) ∧ a(u))

RA(x, y) :=

∀u, v, z

x ≤ u < v ≤ z ∧ Tree(u, v, z, y)⇒
∨
a∈A

a(z)

∧∧

a∈A

∃ u, v, z (x ≤ u < v ≤ z ∧ Tree(u, v, z, y) ∧ a(z))

For instance, with reference to Figure 5, for positions x, y, L{d,e}(x, y) holds. Notice that
for each pair of positions x, y there exists a unique pair of sets A, B such that LA(x, y)
and RB(x, y) hold.

Furthermore, for every 〈L,R〉 ∈ Γ, we add notation P〈L,R〉(x, y), which represents
the terminal profile of the chain, if any, between positions x and y:

P〈L,R〉(x, y) := xy y ∧ LL(x, y) ∧ RR(x, y)

Intuitively, P〈L,R〉(x, y) holds iff, in the syntax tree, the chain between positions x and y
is the frontier of a subtree that has as root nonterminal 〈L,R〉.

Finally, for every 〈L,R〉 ∈ Γ, set

ψ〈L,R〉 := ∀x, y

P〈L,R〉(x, y)
⇒

∨
〈L,R〉→〈L0,R0〉c1〈L1,R1〉c2...ck〈Lk ,Rk〉

∃x1 . . . xk

TreeC(x, x1, . . . , xk, y) ∧∧
1≤i≤k

ci(xi) ∧∧
1≤i≤k−1:
〈Li,Ri〉,ε

P〈Li,Ri〉(xi, xi+1) ∧

x + 1 , x1 ⇒ P〈L0,R0〉(x, x1) ∧
xk + 1 , y⇒ P〈Lk ,Rk〉(xk, y)

where the disjunction is considered over the rules of G:

ρ = 〈L,R〉 → 〈L0,R0〉c1〈L1,R1〉c2 . . . ck〈Lk,Rk〉,

with 〈Li,Ri〉 ∈ N ∪ {ε}, 0 ≤ i ≤ k, and L = L0 ∪ {c1}, R = Rk ∪ {ck}.
To complete the construction and the proof of Theorem 1 we define:

ψ :=
∧
〈A,B〉

ψ〈A,B〉 ∧ ∃e

#(e + 1) ∧ ¬∃y(e + 1 < y) ∧
∨
〈L,R〉∈S

P〈L,R〉(0, e + 1)

11

The proof of the theorem is a direct consequence of the following Lemma 1 when 〈L,R〉
is an axiom of G. ut

Lemma 1. For every 〈L,R〉 ∈ N and for every body w of a chain, we have 〈L,R〉
∗
⇒ w

iff w |= P〈L,R〉(0, |w| + 1) ∧
∧
〈A,B〉

ψ〈A,B〉.

Proof. Consider first the direction from left to right of the lemma. The proof is by
induction on the length h of a derivation.

If h = 1, then 〈L,R〉
∗
⇒ w implies that ρ = 〈L,R〉 → a1a2 . . . al is a production of

G, and w = a1a2 . . . al is the body of a simple chain. G being a FrG, it is L = {a1} and
R = {al}. Since 0y l+1 and w |= L{a1}(0, l+1)∧R{al}(0, l+1), then w |= P〈L,R〉(0, l+1).

For every 〈A, B〉 ∈ Γ and positions x, y, w |= P〈A,B〉(x, y) holds true only if 〈A, B〉 =

〈L,R〉 and x = 0, y = l + 1. Furthermore, there exist (unique) x1 = 1, x2 = 2, . . . , xl = l
such that TreeC(0, 1, . . . , l, l + 1) holds, and for every j = 1, . . . , l, a j(x j) holds true.
Thus, w |= ψ〈A,B〉 for every 〈A, B〉 ∈ Γ, and w |= P〈L,R〉(0, |w| + 1) ∧

∧
〈A,B〉 ψ〈A,B〉.

Assume that this direction of the lemma holds for every derivation of length ≤ h.

Let 〈L,R〉
h+1
⇒ w, with 〈L,R〉 ⇒ 〈L0,R0〉a1〈L1,R1〉a2 . . . al〈Ll,Rl〉 and, for each i =

0, 1, . . . , l, 〈Li,Ri〉
hi
⇒ wi such that hi ≤ h and w = w0a1w1 . . . alwl is the body of a

composed chain (wi = ε if 〈Li,Ri〉 = ε).
By the inductive hypothesis, for every i = 0, 1 . . . , l such that wi , ε, we have wi |=

P〈Li,Ri〉(0, |wi| + 1) ∧
∧
〈A,B〉 ψ〈A,B〉. Let ρ = 〈L,R〉 → 〈L0,R0〉a1〈L1,R1〉a2 . . . al〈Ll,Rl〉:

G being a FrG, we have L = L0 ∪ {a1} and R = Rk ∪ {al}; thus w |= LL(0, |w| + 1) ∧
RR(0, |w| + 1), and w |= P〈L,R〉(0, |w| + 1). Furthermore, let x, y be positions such that
w |= P〈A,B〉(x, y) for some 〈A, B〉 ∈ Γ and x, y are not both inside the same wi, and they
are not si and si+1; then necessarily x = 0, y = |w| + 1, and w |= P〈A,B〉(0, |w| + 1) only if
〈A, B〉 = 〈L,R〉. Also, there exist x0 = 0, x1 = s1, . . . , xl = sl, xl+1 = |w| + 1 such that
TreeC(x0, x1, . . . , xl, xl+1) holds, and for every j = 1, . . . , l, a j(x j) holds true. Hence,
w |=
∧
〈A,B〉 ψ〈A,B〉.

Consider then the direction from right to left of the lemma. The proof is by induction
on the depth d of the chain.

If d = 1, then w = a1a2 . . . al is the body of a simple chain. Since w |= P〈L,R〉(0, |w|+
1), then there exist ρ = 〈L,R〉 → 〈L0,R0〉c1〈L1,R1〉c2 . . . ck〈Lk,Rk〉 and x1, . . . , xk such
that TreeC(0, x1, . . . , xk, |w| + 1) and c j(x j) for every j = 1, . . . , k hold. By definition of
TreeC, we have x j = j for every j = 1, . . . , k and k = l, and a j = c j for every j. There

is, thus, a production of G: ρ = 〈L,R〉 → a1a2 . . . al, and 〈L,R〉
∗
⇒ w holds.

Let now d > 1, then w = w0a1w1 . . . alwl is the body of a composed chain and s j

(1 ≤ j ≤ l) are the unique positions such that TreeC(0, s1, . . . , sl, |w| + 1) holds true.
Since w |= P〈L,R〉(0, |w| + 1) ∧

∧
〈A,B〉 ψ〈A,B〉, then there exists a production ρ of G such

that ρ = 〈L,R〉 → 〈L0,R0〉c1〈L1,R1〉c2 . . . ck〈Lk,Rk〉 and there exist x j (1 ≤ j ≤ k)
with TreeC(0, x1, . . . , xl, |w| + 1) and c j(x j); thus we have k = l and c j = a j for each j.
Furthermore, let x0 = 0, xl+1 = |w| + 1: for every i = 0, 1 . . . , k such that 〈Li,Ri〉 , ε,
w |= P〈Li,Ri〉(xi, xi+1) holds true, and we have wi |= P〈Li,Ri〉(0, |wi| + 1) ∧

∧
〈A,B〉 ψ〈A,B〉. By

inductive hypothesis, thus there exists in G a derivation 〈Li,Ri〉
∗
⇒ wi. Hence, 〈L,R〉 ⇒

〈L0,R0〉a1〈L1,R1〉a2 . . . 〈Lk−1,Rk−1〉ak〈Lk,Rk〉
∗
⇒ w. ut

12

5 Conclusions

After having developed a fairly complete theory of the old OPLs, which now includes
automata and MSO logic characterization, closure and decidability properties, exten-
sions to the case of ω-languages, with this paper we initiated a new research path aimed
at finding suitable subfamilies of OPLs and simpler logics that could enable applications
more practical than those based on MSO logic.

In this first step we showed that from any FrG a first-order formula can be auto-
matically derived so that the words generated by the grammars are exactly those that
satisfy the formula. FrLs suffer from some generative power limits due to the simplicity
of their grammars; however, the same logic that characterizes them can also be applied
to refine them by stating additional desired properties.

Several further steps are scheduled for this research within the general theme of find-
ing formalisms that are general enough to define rather sophisticated languages but also
allow for relatively “efficient” algorithms for applications. We also plan to further inves-
tigate (variants of) our logic; interestingly enough FrLs are non-counting (context-free)
languages [6] and previous literature devoted considerable attention to algebraically and
logically characterize non-counting or star-free regular languages [20].

References

1. Flup. https://github.com/bzoto/flup
2. Alur, R., Arenas, M., Barceló, P., Etessami, K., Immerman, N., Libkin, L.: First-order and

temporal logics for nested words. Logical Methods in Computer Science 4(4) (2008)
3. Alur, R., Madhusudan, P.: Adding nesting structure to words. Journ. ACM 56(3) (2009)
4. Barenghi, A., Crespi Reghizzi, S., Mandrioli, D., Panella, F., Pradella, M.: The PAPAGENO

parallel-parser generator. In: Cohen, A. (ed.) Compiler Construction - 23rd International
Conference, CC 2014, Held as Part of the European Joint Conferences on Theory and Prac-
tice of Software, ETAPS 2014, Grenoble, France, April 5-13, 2014. Proceedings. Lecture
Notes in Computer Science, vol. 8409, pp. 192–196. Springer (2014)

5. Brainerd, W.S.: The minimization of tree automata. Information and Control 13(5) (1968)
6. Crespi Reghizzi, S., Guida, G., Mandrioli, D.: Noncounting Context-Free Languages. Journ.

ACM 25, 571–580 (1978)
7. Crespi Reghizzi, S., Mandrioli, D.: A Class of Grammars Generating Non-Counting Lan-

guages. Inf. Process. Lett. 7(1), 24–26 (1978)
8. Crespi Reghizzi, S., Mandrioli, D.: Operator Precedence and the Visibly Pushdown Property.

Journal of Computer and System Science 78(6), 1837–1867 (2012)
9. Crespi Reghizzi, S., Mandrioli, D., Martin, D.F.: Algebraic Properties of Operator Prece-

dence Languages. Information and Control 37(2), 115–133 (May 1978)
10. Crespi Reghizzi, S., Melkanoff, M.A., Lichten, L.: The Use of Grammatical Inference for

Designing Programming Languages. Commununications of the ACM 16(2), 83–90 (1973)
11. D’Ulizia, A., Ferri, F., Grifoni, P.: A survey of grammatical inference methods for natural

language learning. Artif. Intell. Rev. 36(1), 1–27 (2011), http://dx.doi.org/10.1007/s10462-
010-9199-1

12. Fischer, M.J.: Some properties of precedence languages. In: STOC ’69. pp. 181–190 (1969)
13. Grune, D., Jacobs, C.J.: Parsing techniques: a practical guide. Springer, New York (2008)
14. de la Higuera, C.: Grammatical Inference: Learning Automata and Grammars. Cambridge

University Press, New York, NY, USA (2010)

13

15. Kamp, H.: Tense Logic and the Theory of Linear Order. Ph.D. thesis, University of Califor-
nia, Los Angeles (California) (1968)

16. Lautemann, C., Schwentick, T., Thérien, D.: Logics for context-free languages. In: Selected
Papers from the 8th International Workshop on Computer Science Logic. pp. 205–216. CSL
’94, Springer-Verlag, London, UK, UK (1995)

17. Lonati, V., Mandrioli, D., Pradella, M.: Precedence Automata and Languages. In: 6th Int.
Computer Science Symposium in Russia (CSR), LNCS, vol. 6651, pp. 291–304 (2011)

18. Lonati, V., Mandrioli, D., Pradella, M.: Logic Characterization of Invisibly Structured Lan-
guages: the Case of Floyd Languages. In: SOFSEM, LNCS, vol. 7741. Springer (2013)

19. McNaughton, R.: Parenthesis Grammars. Journ. ACM 14(3), 490–500 (1967)
20. McNaughton, R., Papert, S.: Counter-free Automata. MIT Press, Cambridge, USA (1971)
21. Panella, F., Pradella, M., Lonati, V., Mandrioli, D.: Operator precedence ω-languages. In:

DLT, LNCS, vol. 7907, pp. 396–408 (2013)

14

