106 research outputs found

    Logical strength of complexity theory and a formalization of the PCP theorem in bounded arithmetic

    Full text link
    We present several known formalizations of theorems from computational complexity in bounded arithmetic and formalize the PCP theorem in the theory PV1 (no formalization of this theorem was known). This includes a formalization of the existence and of some properties of the (n,d,{\lambda})-graphs in PV1

    Consistency of circuit lower bounds with bounded theories

    Get PDF
    Proving that there are problems in PNP\mathsf{P}^\mathsf{NP} that require boolean circuits of super-linear size is a major frontier in complexity theory. While such lower bounds are known for larger complexity classes, existing results only show that the corresponding problems are hard on infinitely many input lengths. For instance, proving almost-everywhere circuit lower bounds is open even for problems in MAEXP\mathsf{MAEXP}. Giving the notorious difficulty of proving lower bounds that hold for all large input lengths, we ask the following question: Can we show that a large set of techniques cannot prove that NP\mathsf{NP} is easy infinitely often? Motivated by this and related questions about the interaction between mathematical proofs and computations, we investigate circuit complexity from the perspective of logic. Among other results, we prove that for any parameter k1k \geq 1 it is consistent with theory TT that computational class C⊈i.o.SIZE(nk){\mathcal C} \not \subseteq \textit{i.o.}\mathrm{SIZE}(n^k), where (T,C)(T, \mathcal{C}) is one of the pairs: T=T21T = \mathsf{T}^1_2 and C=PNP{\mathcal C} = \mathsf{P}^\mathsf{NP}, T=S21T = \mathsf{S}^1_2 and C=NP{\mathcal C} = \mathsf{NP}, T=PVT = \mathsf{PV} and C=P{\mathcal C} = \mathsf{P}. In other words, these theories cannot establish infinitely often circuit upper bounds for the corresponding problems. This is of interest because the weaker theory PV\mathsf{PV} already formalizes sophisticated arguments, such as a proof of the PCP Theorem. These consistency statements are unconditional and improve on earlier theorems of [KO17] and [BM18] on the consistency of lower bounds with PV\mathsf{PV}

    Unprovability of circuit upper bounds in Cook's theory PV

    Get PDF
    We establish unconditionally that for every integer k1k \geq 1 there is a language L \in \mbox{P} such that it is consistent with Cook's theory PV that LSize(nk)L \notin Size(n^k). Our argument is non-constructive and does not provide an explicit description of this language

    From proof complexity to circuit complexity via interactive protocols

    Get PDF
    Folklore in complexity theory suspects that circuit lower bounds against NC1 or P/poly, currently out of reach, are a necessary step towards proving strong proof complexity lower bounds for systems like Frege or Extended Frege. Establishing such a connection formally, however, is already daunting, as it would imply the breakthrough separation NEXP ⊈ P/poly, as recently observed by Pich and Santhanam [Pich and Santhanam, 2023]. We show such a connection conditionally for the Implicit Extended Frege proof system (iEF) introduced by Krajíček [Krajíček, 2004], capable of formalizing most of contemporary complexity theory. In particular, we show that if iEF proves efficiently the standard derandomization assumption that a concrete Boolean function is hard on average for subexponential-size circuits, then any superpolynomial lower bound on the length of iEF proofs implies #P ⊈ FP/poly (which would in turn imply, for example, PSPACE ⊈ P/poly). Our proof exploits the formalization inside iEF of the soundness of the sum-check protocol of Lund, Fortnow, Karloff, and Nisan [Lund et al., 1992]. This has consequences for the self-provability of circuit upper bounds in iEF. Interestingly, further improving our result seems to require progress in constructing interactive proof systems with more efficient provers

    Expander Construction in VNC1

    Get PDF
    We give a combinatorial analysis (using edge expansion) of a variant of the iterative expander construction due to Reingold, Vadhan, and Wigderson (2002), and show that this analysis can be formalized in the bounded arithmetic system VNC^1 (corresponding to the "NC^1 reasoning"). As a corollary, we prove the assumption made by Jerabek (2011) that a construction of certain bipartite expander graphs can be formalized in VNC^1. This in turn implies that every proof in Gentzen\u27s sequent calculus LK of a monotone sequent can be simulated in the monotone version of LK (MLK) with only polynomial blowup in proof size, strengthening the quasipolynomial simulation result of Atserias, Galesi, and Pudlak (2002)

    Feasibly constructive proofs of succinct weak circuit lower bounds

    Get PDF
    We ask for feasibly constructive proofs of known circuit lower bounds for explicit functions on bit strings of length n. In 1995 Razborov showed that many can be proved in PV1, a bounded arithmetic formalizing polynomial time reasoning. He formalized circuit lower bound statements for small n of doubly logarithmic order. It is open whether PV1 proves known lower bounds in succinct formalizations for n of logarithmic order. We give such proofs in APC1, an extension of PV1 formalizing probabilistic polynomial time reasoning: for parity and AC0, for mod q and AC0[p] (only for n slightly smaller than logarithmic), and for k-clique and monotone circuits. We also formalize Razborov and Rudich’s natural proof barrier. We ask for short propositional proofs of circuit lower bounds expressed succinctly by propositional formulas of size nO(1) or at least much smaller than the 2O(n) size of the common “truth table” formula. We discuss two such expressions: one via feasible functions witnessing errors of circuits, and one via the anticheckers of Lipton and Young 1994. Our APC1 formalizations yield conditional upper bounds for the succinct formulas obtained by witnessing: we get short Extended Frege proofs from general circuit lower bounds expressed by the common “truth-table” formulas. We also show how to construct in quasipolynomial time propositional proofs of quasipolynomial size tautologies expressing AC0[p] quasipolynomial size lower bounds; these proofs are in Jerábek’s system WF.Peer ReviewedPostprint (author's final draft

    Consistency of circuit lower bounds with bounded theories

    Get PDF
    Proving that there are problems in PNP\mathsf{P}^\mathsf{NP} that require boolean circuits of super-linear size is a major frontier in complexity theory. While such lower bounds are known for larger complexity classes, existing results only show that the corresponding problems are hard on infinitely many input lengths. For instance, proving almost-everywhere circuit lower bounds is open even for problems in MAEXP\mathsf{MAEXP}. Giving the notorious difficulty of proving lower bounds that hold for all large input lengths, we ask the following question: Can we show that a large set of techniques cannot prove that NP\mathsf{NP} is easy infinitely often? Motivated by this and related questions about the interaction between mathematical proofs and computations, we investigate circuit complexity from the perspective of logic. Among other results, we prove that for any parameter k1k \geq 1 it is consistent with theory TT that computational class C⊈i.o.SIZE(nk){\mathcal C} \not \subseteq \textit{i.o.}\mathrm{SIZE}(n^k), where (T,C)(T, \mathcal{C}) is one of the pairs: T=T21T = \mathsf{T}^1_2 and C=PNP{\mathcal C} = \mathsf{P}^\mathsf{NP}, T=S21T = \mathsf{S}^1_2 and C=NP{\mathcal C} = \mathsf{NP}, T=PVT = \mathsf{PV} and C=P{\mathcal C} = \mathsf{P}. In other words, these theories cannot establish infinitely often circuit upper bounds for the corresponding problems. This is of interest because the weaker theory PV\mathsf{PV} already formalizes sophisticated arguments, such as a proof of the PCP Theorem. These consistency statements are unconditional and improve on earlier theorems of [KO17] and [BM18] on the consistency of lower bounds with PV\mathsf{PV}

    Mechanised metamathematics : an investigation of first-order logic and set theory in constructive type theory

    Get PDF
    In this thesis, we investigate several key results in the canon of metamathematics, applying the contemporary perspective of formalisation in constructive type theory and mechanisation in the Coq proof assistant. Concretely, we consider the central completeness, undecidability, and incompleteness theorems of first-order logic as well as properties of the axiom of choice and the continuum hypothesis in axiomatic set theory. Due to their fundamental role in the foundations of mathematics and their technical intricacies, these results have a long tradition in the codification as standard literature and, in more recent investigations, increasingly serve as a benchmark for computer mechanisation. With the present thesis, we continue this tradition by uniformly analysing the aforementioned cornerstones of metamathematics in the formal framework of constructive type theory. This programme offers novel insights into the constructive content of completeness, a synthetic approach to undecidability and incompleteness that largely eliminates the notorious tedium obscuring the essence of their proofs, as well as natural representations of set theory in the form of a second-order axiomatisation and of a fully type-theoretic account. The mechanisation concerning first-order logic is organised as a comprehensive Coq library open to usage and contribution by external users.In dieser Doktorarbeit werden einige Schlüsselergebnisse aus dem Kanon der Metamathematik untersucht, unter Verwendung der zeitgenössischen Perspektive von Formalisierung in konstruktiver Typtheorie und Mechanisierung mit Hilfe des Beweisassistenten Coq. Konkret werden die zentralen Vollständigkeits-, Unentscheidbarkeits- und Unvollständigkeitsergebnisse der Logik erster Ordnung sowie Eigenschaften des Auswahlaxioms und der Kontinuumshypothese in axiomatischer Mengenlehre betrachtet. Aufgrund ihrer fundamentalen Rolle in der Fundierung der Mathematik und ihrer technischen Schwierigkeiten, besitzen diese Ergebnisse eine lange Tradition der Kodifizierung als Standardliteratur und, besonders in jüngeren Untersuchungen, eine zunehmende Bedeutung als Maßstab für Mechanisierung mit Computern. Mit der vorliegenden Doktorarbeit wird diese Tradition fortgeführt, indem die zuvorgenannten Grundpfeiler der Methamatematik uniform im formalen Rahmen der konstruktiven Typtheorie analysiert werden. Dieses Programm ermöglicht neue Einsichten in den konstruktiven Gehalt von Vollständigkeit, einen synthetischen Ansatz für Unentscheidbarkeit und Unvollständigkeit, der großteils den berüchtigten, die Essenz der Beweise verdeckenden, technischen Aufwand eliminiert, sowie natürliche Repräsentationen von Mengentheorie in Form einer Axiomatisierung zweiter Ordnung und einer vollkommen typtheoretischen Darstellung. Die Mechanisierung zur Logik erster Ordnung ist als eine umfassende Coq-Bibliothek organisiert, die offen für Nutzung und Beiträge externer Anwender ist

    The prospects for mathematical logic in the twenty-first century

    Get PDF
    The four authors present their speculations about the future developments of mathematical logic in the twenty-first century. The areas of recursion theory, proof theory and logic for computer science, model theory, and set theory are discussed independently.Comment: Association for Symbolic Logi
    corecore