609 research outputs found

    Efficient Algorithms for Membership in Boolean Hierarchies of Regular Languages

    Get PDF
    The purpose of this paper is to provide efficient algorithms that decide membership for classes of several Boolean hierarchies for which efficiency (or even decidability) were previously not known. We develop new forbidden-chain characterizations for the single levels of these hierarchies and obtain the following results: - The classes of the Boolean hierarchy over level Ī£1\Sigma_1 of the dot-depth hierarchy are decidable in NLNL (previously only the decidability was known). The same remains true if predicates mod dd for fixed dd are allowed. - If modular predicates for arbitrary dd are allowed, then the classes of the Boolean hierarchy over level Ī£1\Sigma_1 are decidable. - For the restricted case of a two-letter alphabet, the classes of the Boolean hierarchy over level Ī£2\Sigma_2 of the Straubing-Th\'erien hierarchy are decidable in NLNL. This is the first decidability result for this hierarchy. - The membership problems for all mentioned Boolean-hierarchy classes are logspace many-one hard for NLNL. - The membership problems for quasi-aperiodic languages and for dd-quasi-aperiodic languages are logspace many-one complete for PSPACEPSPACE

    Logical and Algebraic Characterizations of Rational Transductions

    Full text link
    Rational word languages can be defined by several equivalent means: finite state automata, rational expressions, finite congruences, or monadic second-order (MSO) logic. The robust subclass of aperiodic languages is defined by: counter-free automata, star-free expressions, aperiodic (finite) congruences, or first-order (FO) logic. In particular, their algebraic characterization by aperiodic congruences allows to decide whether a regular language is aperiodic. We lift this decidability result to rational transductions, i.e., word-to-word functions defined by finite state transducers. In this context, logical and algebraic characterizations have also been proposed. Our main result is that one can decide if a rational transduction (given as a transducer) is in a given decidable congruence class. We also establish a transfer result from logic-algebra equivalences over languages to equivalences over transductions. As a consequence, it is decidable if a rational transduction is first-order definable, and we show that this problem is PSPACE-complete

    Logics for complexity classes

    Full text link
    A new syntactic characterization of problems complete via Turing reductions is presented. General canonical forms are developed in order to define such problems. One of these forms allows us to define complete problems on ordered structures, and another form to define them on unordered non-Aristotelian structures. Using the canonical forms, logics are developed for complete problems in various complexity classes. Evidence is shown that there cannot be any complete problem on Aristotelian structures for several complexity classes. Our approach is extended beyond complete problems. Using a similar form, a logic is developed to capture the complexity class NPāˆ©coNPNP\cap coNP which very likely contains no complete problem.Comment: This article has been accepted for publication in Logic Journal of IGPL Published by Oxford University Press; 23 pages, 2 figure

    Observation of implicit complexity by non confluence

    Get PDF
    We propose to consider non confluence with respect to implicit complexity. We come back to some well known classes of first-order functional program, for which we have a characterization of their intentional properties, namely the class of cons-free programs, the class of programs with an interpretation, and the class of programs with a quasi-interpretation together with a termination proof by the product path ordering. They all correspond to PTIME. We prove that adding non confluence to the rules leads to respectively PTIME, NPTIME and PSPACE. Our thesis is that the separation of the classes is actually a witness of the intentional properties of the initial classes of programs

    Linear and Branching System Metrics

    Get PDF
    We extend the classical system relations of trace\ud inclusion, trace equivalence, simulation, and bisimulation to a quantitative setting in which propositions are interpreted not as boolean values, but as elements of arbitrary metric spaces.\ud \ud Trace inclusion and equivalence give rise to asymmetrical and symmetrical linear distances, while simulation and bisimulation give rise to asymmetrical and symmetrical branching distances. We study the relationships among these distances, and we provide a full logical characterization of the distances in terms of quantitative versions of LTL and Ī¼-calculus. We show that, while trace inclusion (resp. equivalence) coincides with simulation (resp. bisimulation) for deterministic boolean transition systems, linear\ud and branching distances do not coincide for deterministic metric transition systems. Finally, we provide algorithms for computing the distances over finite systems, together with a matching lower complexity bound

    Fragments of first-order logic over infinite words

    Get PDF
    We give topological and algebraic characterizations as well as language theoretic descriptions of the following subclasses of first-order logic FO[<] for omega-languages: Sigma_2, FO^2, the intersection of FO^2 and Sigma_2, and Delta_2 (and by duality Pi_2 and the intersection of FO^2 and Pi_2). These descriptions extend the respective results for finite words. In particular, we relate the above fragments to language classes of certain (unambiguous) polynomials. An immediate consequence is the decidability of the membership problem of these classes, but this was shown before by Wilke and Bojanczyk and is therefore not our main focus. The paper is about the interplay of algebraic, topological, and language theoretic properties.Comment: Conference version presented at 26th International Symposium on Theoretical Aspects of Computer Science, STACS 200

    Dimension Extractors and Optimal Decompression

    Full text link
    A *dimension extractor* is an algorithm designed to increase the effective dimension -- i.e., the amount of computational randomness -- of an infinite binary sequence, in order to turn a "partially random" sequence into a "more random" sequence. Extractors are exhibited for various effective dimensions, including constructive, computable, space-bounded, time-bounded, and finite-state dimension. Using similar techniques, the Kucera-Gacs theorem is examined from the perspective of decompression, by showing that every infinite sequence S is Turing reducible to a Martin-Loef random sequence R such that the asymptotic number of bits of R needed to compute n bits of S, divided by n, is precisely the constructive dimension of S, which is shown to be the optimal ratio of query bits to computed bits achievable with Turing reductions. The extractors and decompressors that are developed lead directly to new characterizations of some effective dimensions in terms of optimal decompression by Turing reductions.Comment: This report was combined with a different conference paper "Every Sequence is Decompressible from a Random One" (cs.IT/0511074, at http://dx.doi.org/10.1007/11780342_17), and both titles were changed, with the conference paper incorporated as section 5 of this new combined paper. The combined paper was accepted to the journal Theory of Computing Systems, as part of a special issue of invited papers from the second conference on Computability in Europe, 200
    • ā€¦
    corecore