399 research outputs found

    Logic-based schedulability analysis for compositional hard real-time embedded systems

    Get PDF
    This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in SIGBED Review, VOL.12, ISS.1, http://doi.acm.org/10.1145/2752801.2752808Over the past decades several approaches for schedu- lability analysis have been proposed for both uniprocessor and multi-processor real-time systems. Although different techniques are employed, very little has been put forward in using formal specifications, with the consequent possibility for misinterpretations or ambiguities in the problem statement. Using a logic based approach to schedulability analysis in the design of hard real-time systems eases the synthesis of correct-by- construction procedures for both static and dynamic verification processes. In this paper we propose a novel approach to schedulability analysis based on a timed temporal logic with time durations. Our approach subsumes classical methods for uniprocessor scheduling analysis over compositional resource models by providing the developer with counter-examples, and by ruling out schedules that cause unsafe violations on the system. We also provide an example showing the effectiveness of our proposal.This work was partially supported by National Funds through FCT (Portuguese Foundation for Science and Technology) and by ERDF (European Regional Development Fund) through COMPETE (Operational Programme ’Thematic Fac- tors of Competitiveness’), within projects Ref. FCOMP-01- 0124-FEDER-022701 (CISTER), FCOMP-01-0124-FEDER- 015006 (VIPCORE) and FCOMP-01-0124-FEDER-020486 (AVIACC)

    A compositional monitoring framework for hard real-time systems

    Get PDF
    Runtime Monitoring of hard real-time embedded systems is a promising technique for ensuring that a running system respects timing constraints, possibly combined with faults originated by the software and/or hardware. This is particularly important when we have real-time embedded systems made of several components that must combine different levels of criticality, and different levels of correctness requirements. This paper introduces a compositional monitoring framework coupled with guarantees that include time isolation and the response time of a monitor for a predicted violation. The kind of monitors that we propose are automatically generated by synthesizing logic formulas of a timed temporal logic, and their correctness is ensured by construction.This work was partially supported by National Funds through FCT (Portuguese Foundation for Science and Technology) and by ERDF (European Regional Development Fund) through COMPETE (Operational Programme ’Thematic Factors of Competitiveness’), within projects Ref. FCOMP-01-0124-FEDER-022701 (CISTER), FCOMP-01-0124- FEDER-015006 (VIPCORE) and FCOMP-01-0124-FEDER-020486 (AVIACC)

    Hard Real-Time Java:Profiles and Schedulability Analysis

    Get PDF

    Quantitative Verification: Formal Guarantees for Timeliness, Reliability and Performance

    Get PDF
    Computerised systems appear in almost all aspects of our daily lives, often in safety-critical scenarios such as embedded control systems in cars and aircraft or medical devices such as pacemakers and sensors. We are thus increasingly reliant on these systems working correctly, despite often operating in unpredictable or unreliable environments. Designers of such devices need ways to guarantee that they will operate in a reliable and efficient manner. Quantitative verification is a technique for analysing quantitative aspects of a system's design, such as timeliness, reliability or performance. It applies formal methods, based on a rigorous analysis of a mathematical model of the system, to automatically prove certain precisely specified properties, e.g. ``the airbag will always deploy within 20 milliseconds after a crash'' or ``the probability of both sensors failing simultaneously is less than 0.001''. The ability to formally guarantee quantitative properties of this kind is beneficial across a wide range of application domains. For example, in safety-critical systems, it may be essential to establish credible bounds on the probability with which certain failures or combinations of failures can occur. In embedded control systems, it is often important to comply with strict constraints on timing or resources. More generally, being able to derive guarantees on precisely specified levels of performance or efficiency is a valuable tool in the design of, for example, wireless networking protocols, robotic systems or power management algorithms, to name but a few. This report gives a short introduction to quantitative verification, focusing in particular on a widely used technique called model checking, and its generalisation to the analysis of quantitative aspects of a system such as timing, probabilistic behaviour or resource usage. The intended audience is industrial designers and developers of systems such as those highlighted above who could benefit from the application of quantitative verification,but lack expertise in formal verification or modelling

    Extensible Energy Planning Framework for Preemptive Tasks

    Get PDF
    Cyber-physical systems (CSPs) are demanding energy-efficient design not only of hardware (HW), but also of software (SW). Dynamic Voltage and and Frequency Scaling (DVFS) and Dynamic Power Manage (DPM) are most popular techniques to improve the energy efficiency. However, contemporary complicated HW and SW designs requires more elaborate and sophisticated energy management and efficiency evaluation techniques. This paper is concerned about energy supply planning for real-time scheduling systems (units) of which tasks need to meet deadlines. This paper presents a modelbased compositional energy planning technique that computes a minimal ratio of processor frequency that preserves schedulability of independent and preemptive tasks. The minimal ratio of processor frequency can be used to plan the energy supply of real-time components. Our model-based technique is extensible by refining our model with additional features so that energy management techniques and their energy efficiency can be evaluated by model checking techniques. We exploit the compositional framework for hierarchical scheduling systems and provide a new resource model for the frequency computation. As results, our use-case for avionics software components shows that our new method outperforms the classical real-time calculus (RTC) method, requiring 36.21% less frequency ratio on average for scheduling units under RM than the RTC method

    Design of Mixed-Criticality Applications on Distributed Real-Time Systems

    Get PDF
    • …
    corecore