4,590 research outputs found

    A Tree Logic with Graded Paths and Nominals

    Full text link
    Regular tree grammars and regular path expressions constitute core constructs widely used in programming languages and type systems. Nevertheless, there has been little research so far on reasoning frameworks for path expressions where node cardinality constraints occur along a path in a tree. We present a logic capable of expressing deep counting along paths which may include arbitrary recursive forward and backward navigation. The counting extensions can be seen as a generalization of graded modalities that count immediate successor nodes. While the combination of graded modalities, nominals, and inverse modalities yields undecidable logics over graphs, we show that these features can be combined in a tree logic decidable in exponential time

    Completeness of Flat Coalgebraic Fixpoint Logics

    Full text link
    Modal fixpoint logics traditionally play a central role in computer science, in particular in artificial intelligence and concurrency. The mu-calculus and its relatives are among the most expressive logics of this type. However, popular fixpoint logics tend to trade expressivity for simplicity and readability, and in fact often live within the single variable fragment of the mu-calculus. The family of such flat fixpoint logics includes, e.g., LTL, CTL, and the logic of common knowledge. Extending this notion to the generic semantic framework of coalgebraic logic enables covering a wide range of logics beyond the standard mu-calculus including, e.g., flat fragments of the graded mu-calculus and the alternating-time mu-calculus (such as alternating-time temporal logic ATL), as well as probabilistic and monotone fixpoint logics. We give a generic proof of completeness of the Kozen-Park axiomatization for such flat coalgebraic fixpoint logics.Comment: Short version appeared in Proc. 21st International Conference on Concurrency Theory, CONCUR 2010, Vol. 6269 of Lecture Notes in Computer Science, Springer, 2010, pp. 524-53

    Functional Ownership through Fractional Uniqueness

    Full text link
    Ownership and borrowing systems, designed to enforce safe memory management without the need for garbage collection, have been brought to the fore by the Rust programming language. Rust also aims to bring some guarantees offered by functional programming into the realm of performant systems code, but the type system is largely separate from the ownership model, with type and borrow checking happening in separate compilation phases. Recent models such as RustBelt and Oxide aim to formalise Rust in depth, but there is less focus on integrating the basic ideas into more traditional type systems. An approach designed to expose an essential core for ownership and borrowing would open the door for functional languages to borrow concepts found in Rust and other ownership frameworks, so that more programmers can enjoy their benefits. One strategy for managing memory in a functional setting is through uniqueness types, but these offer a coarse-grained view: either a value has exactly one reference, and can be mutated safely, or it cannot, since other references may exist. Recent work demonstrates that linear and uniqueness types can be combined in a single system to offer restrictions on program behaviour and guarantees about memory usage. We develop this connection further, showing that just as graded type systems like those of Granule and Idris generalise linearity, Rust's ownership model arises as a graded generalisation of uniqueness. We combine fractional permissions with grading to give the first account of ownership and borrowing that smoothly integrates into a standard type system alongside linearity and graded types, and extend Granule accordingly with these ideas.Comment: 23 pages + references. In submissio

    Global Numerical Constraints on Trees

    Full text link
    We introduce a logical foundation to reason on tree structures with constraints on the number of node occurrences. Related formalisms are limited to express occurrence constraints on particular tree regions, as for instance the children of a given node. By contrast, the logic introduced in the present work can concisely express numerical bounds on any region, descendants or ancestors for instance. We prove that the logic is decidable in single exponential time even if the numerical constraints are in binary form. We also illustrate the usage of the logic in the description of numerical constraints on multi-directional path queries on XML documents. Furthermore, numerical restrictions on regular languages (XML schemas) can also be concisely described by the logic. This implies a characterization of decidable counting extensions of XPath queries and XML schemas. Moreover, as the logic is closed under negation, it can thus be used as an optimal reasoning framework for testing emptiness, containment and equivalence

    Disjunctive bases: normal forms and model theory for modal logics

    Get PDF
    We present the concept of a disjunctive basis as a generic framework for normal forms in modal logic based on coalgebra. Disjunctive bases were defined in previous work on completeness for modal fixpoint logics, where they played a central role in the proof of a generic completeness theorem for coalgebraic mu-calculi. Believing the concept has a much wider significance, here we investigate it more thoroughly in its own right. We show that the presence of a disjunctive basis at the "one-step" level entails a number of good properties for a coalgebraic mu-calculus, in particular, a simulation theorem showing that every alternating automaton can be transformed into an equivalent nondeterministic one. Based on this, we prove a Lyndon theorem for the full fixpoint logic, its fixpoint-free fragment and its one-step fragment, a Uniform Interpolation result, for both the full mu-calculus and its fixpoint-free fragment, and a Janin-Walukiewicz-style characterization theorem for the mu-calculus under slightly stronger assumptions. We also raise the questions, when a disjunctive basis exists, and how disjunctive bases are related to Moss' coalgebraic "nabla" modalities. Nabla formulas provide disjunctive bases for many coalgebraic modal logics, but there are cases where disjunctive bases give useful normal forms even when nabla formulas fail to do so, our prime example being graded modal logic. We also show that disjunctive bases are preserved by forming sums, products and compositions of coalgebraic modal logics, providing tools for modular construction of modal logics admitting disjunctive bases. Finally, we consider the problem of giving a category-theoretic formulation of disjunctive bases, and provide a partial solution

    Quantitative Equality in Substructural Logic via Lipschitz Doctrines

    Full text link
    Substructural logics naturally support a quantitative interpretation of formulas, as they are seen as consumable resources. Distances are the quantitative counterpart of equivalence relations: they measure how much two objects are similar, rather than just saying whether they are equivalent or not. Hence, they provide the natural choice for modelling equality in a substructural setting. In this paper, we develop this idea, using the categorical language of Lawvere's doctrines. We work in a minimal fragment of Linear Logic enriched by graded modalities, which are needed to write a resource sensitive substitution rule for equality, enabling its quantitative interpretation as a distance. We introduce both a deductive calculus and the notion of Lipschitz doctrine to give it a sound and complete categorical semantics. The study of 2-categorical properties of Lipschitz doctrines provides us with a universal construction, which generates examples based for instance on metric spaces and quantitative realisability. Finally, we show how to smoothly extend our results to richer substructural logics, up to full Linear Logic with quantifiers

    Formal verification of higher-order probabilistic programs

    Full text link
    Probabilistic programming provides a convenient lingua franca for writing succinct and rigorous descriptions of probabilistic models and inference tasks. Several probabilistic programming languages, including Anglican, Church or Hakaru, derive their expressiveness from a powerful combination of continuous distributions, conditioning, and higher-order functions. Although very important for practical applications, these combined features raise fundamental challenges for program semantics and verification. Several recent works offer promising answers to these challenges, but their primary focus is on semantical issues. In this paper, we take a step further and we develop a set of program logics, named PPV, for proving properties of programs written in an expressive probabilistic higher-order language with continuous distributions and operators for conditioning distributions by real-valued functions. Pleasingly, our program logics retain the comfortable reasoning style of informal proofs thanks to carefully selected axiomatizations of key results from probability theory. The versatility of our logics is illustrated through the formal verification of several intricate examples from statistics, probabilistic inference, and machine learning. We further show the expressiveness of our logics by giving sound embeddings of existing logics. In particular, we do this in a parametric way by showing how the semantics idea of (unary and relational) TT-lifting can be internalized in our logics. The soundness of PPV follows by interpreting programs and assertions in quasi-Borel spaces (QBS), a recently proposed variant of Borel spaces with a good structure for interpreting higher order probabilistic programs

    Combining Effects and Coeffects via Grading

    Get PDF
    This is the author accepted manuscript. It is currently under an indefinite embargo pending publication by the Association for Computing Machinery.Effects\textit{Effects} and coeffects\textit{coeffects} are two general, complementary aspects of program behaviour. They roughly correspond to computations which change the execution context (effects) versus computations which make demands on the context (coeffects). Effectful features include partiality, non-determinism, input-output, state, and exceptions. Coeffectful features include resource demands, variable access, notions of linearity, and data input requirements. The effectful or coeffectful behaviour of a program can be captured and described via type-based analyses, with fine grained information provided by monoidal effect annotations and semiring coeffects. Various recent work has proposed models for such typed calculi in terms of graded (strong) monads\textit{graded (strong) monads} for effects and graded (monoidal) comonads\textit{graded (monoidal) comonads} for coeffects. Effects and coeffects have been studied separately so far, but in practice many computations are both effectful and coeffectful, e.g., possibly throwing exceptions but with resource requirements. To remedy this, we introduce a new general calculus with a combined effect-coeffect system\textit{effect-coeffect system}. This can describe both the changes\textit{changes} and requirements\textit{requirements} that a program has on its context, as well as interactions between these effectful and coeffectful features of computation. The effect-coeffect system has a denotational model in terms of effect-graded monads and coeffect-graded comonads where interaction is expressed via the novel concept of graded distributive laws\textit{graded distributive laws}. This graded semantics unifies the syntactic type theory with the denotational model. We show that our calculus can be instantiated to describe in a natural way various different kinds of interaction between a program and its evaluation context.Orchard was supported by EPSRC grant EP/M026124/1 and EP/K011715/1 (whilst previously at Imperial College London), Katsumata by JSPS KAKENHI grant JP15K00014, Uustalu by Estonian Min. of Educ. and Res. grant IUT33-13 and Estonian Sci. Found. grant 9475. Gaboardi’s work was done in part while at the University of Dundee, UK supported by EPSRC grant EP/M022358/1
    corecore