43,390 research outputs found

    On dilatation operator for a renormalizable theory

    Full text link
    Given a renormalizable theory we construct the dilatation operator, in the sense of generator of RG flow of composite operators. The generator is found as a differential operator acting on the space of normal symbols of composite operators in the theory. In the spirit of AdS/CFT correspondence, this operator is interpreted as the Hamiltonian of the dual theory. In the case of a field theory with non-abelian gauge symmetry the resulting system is a matrix model. The one-loop case is analyzed in details and it is shown that we reproduce known results from N=4 supersymmetric Yang-Mills theory.Comment: 26 pages, no figure

    Entanglement Dynamics after a Quench in Ising Field Theory: A Branch Point Twist Field Approach

    Get PDF
    We extend the branch point twist field approach for the calculation of entanglement entropies to time-dependent problems in 1+1-dimensional massive quantum field theories. We focus on the simplest example: a mass quench in the Ising field theory from initial mass m0 to final mass m. The main analytical results are obtained from a perturbative expansion of the twist field one-point function in the post-quench quasi-particle basis. The expected linear growth of the Rényi entropies at large times mt ≫ 1 emerges from a perturbative calculation at second order. We also show that the Rényi and von Neumann entropies, in infinite volume, contain subleading oscillatory contributions of frequency 2m and amplitude proportional to (mt)−3/2. The oscillatory terms are correctly predicted by an alternative perturbation series, in the pre-quench quasi-particle basis, which we also discuss. A comparison to lattice numerical calculations carried out on an Ising chain in the scaling limit shows very good agreement with the quantum field theory predictions. We also find evidence of clustering of twist field correlators which implies that the entanglement entropies are proportional to the number of subsystem boundary points

    Aperiodic Ising Quantum Chains

    Full text link
    Some years ago, Luck proposed a relevance criterion for the effect of aperiodic disorder on the critical behaviour of ferromagnetic Ising systems. In this article, we show how Luck's criterion can be derived within an exact renormalisation scheme for Ising quantum chains with coupling constants modulated according to substitution rules. Luck's conjectures for this case are confirmed and refined. Among other outcomes, we give an exact formula for the correlation length critical exponent for arbitrary two-letter substitution sequences with marginal fluctuations of the coupling constants.Comment: 27 pages, LaTeX, 1 Postscript figure included, using epsf.sty and amssymb.sty (one error corrected, some minor changes

    Integrability and conformal data of the dimer model

    Full text link
    The central charge of the dimer model on the square lattice is still being debated in the literature. In this paper, we provide evidence supporting the consistency of a c=−2c=-2 description. Using Lieb's transfer matrix and its description in terms of the Temperley-Lieb algebra TLnTL_n at β=0\beta = 0, we provide a new solution of the dimer model in terms of the model of critical dense polymers on a tilted lattice and offer an understanding of the lattice integrability of the dimer model. The dimer transfer matrix is analysed in the scaling limit and the result for L0−c24L_0-\frac c{24} is expressed in terms of fermions. Higher Virasoro modes are likewise constructed as limits of elements of TLnTL_n and are found to yield a c=−2c=-2 realisation of the Virasoro algebra, familiar from fermionic bcbc ghost systems. In this realisation, the dimer Fock spaces are shown to decompose, as Virasoro modules, into direct sums of Feigin-Fuchs modules, themselves exhibiting reducible yet indecomposable structures. In the scaling limit, the eigenvalues of the lattice integrals of motion are found to agree exactly with those of the c=−2c=-2 conformal integrals of motion. Consistent with the expression for L0−c24L_0-\frac c{24} obtained from the transfer matrix, we also construct higher Virasoro modes with c=1c=1 and find that the dimer Fock space is completely reducible under their action. However, the transfer matrix is found not to be a generating function for the c=1c=1 integrals of motion. Although this indicates that Lieb's transfer matrix description is incompatible with the c=1c=1 interpretation, it does not rule out the existence of an alternative, c=1c=1 compatible, transfer matrix description of the dimer model.Comment: 54 pages. v2: minor correction
    • …
    corecore