8 research outputs found

    Implementing Performance Competitive Logical Recovery

    Full text link
    New hardware platforms, e.g. cloud, multi-core, etc., have led to a reconsideration of database system architecture. Our Deuteronomy project separates transactional functionality from data management functionality, enabling a flexible response to exploiting new platforms. This separation requires, however, that recovery is described logically. In this paper, we extend current recovery methods to work in this logical setting. While this is straightforward in principle, performance is an issue. We show how ARIES style recovery optimizations can work for logical recovery where page information is not captured on the log. In side-by-side performance experiments using a common log, we compare logical recovery with a state-of-the art ARIES style recovery implementation and show that logical redo performance can be competitive.Comment: VLDB201

    CumuloNimbo: a cloud scalable multi-tier SQL database

    Get PDF
    This article presents an overview of the CumuloNimbo platform. CumuloNimbo is a framework for multi-tier applications that provides scalable and fault-tolerant processing of OLTP workloads. The main novelty of CumuloNimbo is that it provides a standard SQL interface and full transactional support without resorting to sharding and no need to know the workload in advance. Scalability is achieved by distributing request execution and transaction control across many compute nodes while data is persisted in a distributed data store. In this paper we present an overview of the platform

    Scalable Range Locks for Scalable Address Spaces and Beyond

    Full text link
    Range locks are a synchronization construct designed to provide concurrent access to multiple threads (or processes) to disjoint parts of a shared resource. Originally conceived in the file system context, range locks are gaining increasing interest in the Linux kernel community seeking to alleviate bottlenecks in the virtual memory management subsystem. The existing implementation of range locks in the kernel, however, uses an internal spin lock to protect the underlying tree structure that keeps track of acquired and requested ranges. This spin lock becomes a point of contention on its own when the range lock is frequently acquired. Furthermore, where and exactly how specific (refined) ranges can be locked remains an open question. In this paper, we make two independent, but related contributions. First, we propose an alternative approach for building range locks based on linked lists. The lists are easy to maintain in a lock-less fashion, and in fact, our range locks do not use any internal locks in the common case. Second, we show how the range of the lock can be refined in the mprotect operation through a speculative mechanism. This refinement, in turn, allows concurrent execution of mprotect operations on non-overlapping memory regions. We implement our new algorithms and demonstrate their effectiveness in user-space and kernel-space, achieving up to 9×\times speedup compared to the stock version of the Linux kernel. Beyond the virtual memory management subsystem, we discuss other applications of range locks in parallel software. As a concrete example, we show how range locks can be used to facilitate the design of scalable concurrent data structures, such as skip lists.Comment: 17 pages, 9 figures, Eurosys 202

    Fast Distributed Transactions for Partitioned Database Systems.

    Get PDF
    ABSTRACT Many distributed storage systems achieve high data access throughput via partitioning and replication, each system with its own advantages and tradeoffs. In order to achieve high scalability, however, today's systems generally reduce transactional support, disallowing single transactions from spanning multiple partitions. Calvin is a practical transaction scheduling and data replication layer that uses a deterministic ordering guarantee to significantly reduce the normally prohibitive contention costs associated with distributed transactions. Unlike previous deterministic database system prototypes, Calvin supports disk-based storage, scales near-linearly on a cluster of commodity machines, and has no single point of failure. By replicating transaction inputs rather than effects, Calvin is also able to support multiple consistency levels-including Paxosbased strong consistency across geographically distant replicas-at no cost to transactional throughput
    corecore