6 research outputs found

    Image-Based Positioning of Mobile Devices in Indoor Environments

    Full text link

    Absolute geo-localization thanks to Hidden Markov Model and exemplar-based metric learning

    Full text link
    International audienceThis paper addresses the problem of absolute visual ego-localization of an autonomous vehicle equipped with a monocular camera that has to navigate in an urban environment. The proposed method is based on a combination of: 1) a Hidden Markov Model (HMM) exploiting the spatio-temporal coherency of acquired images and 2) learnt metrics dedicated to robust visual localization in complex scenes, such as streets. The HMM merges odometric measurements and visual similarities computed from specific (local) metrics learnt for each image of the database. To achieve this goal, we define some constraints so that the distance between a database image and a query image representing the same scene is smaller than the distance between this query image and other neighbor images of the database. Successful experiments, conducted using a freely available geo-referenced image database, reveal that the proposed method significantly improves results: the mean localization error is reduced from 12.9m to 3.9m over a 11km path

    Camera Pose Estimation from Street-view Snapshots and Point Clouds

    Get PDF
    This PhD thesis targets on two research problems: (1) How to efficiently and robustly estimate the camera pose of a query image with a map that contains street-view snapshots and point clouds; (2) Given the estimated camera pose of a query image, how to create meaningful and intuitive applications with the map data. To conquer the first research problem, we systematically investigated indirect, direct and hybrid camera pose estimation strategies. We implemented state-of-the-art methods and performed comprehensive experiments in two public benchmark datasets considering outdoor environmental changes from ideal to extremely challenging cases. Our key findings are: (1) the indirect method is usually more accurate than the direct method when there are enough consistent feature correspondences; (2) The direct method is sensitive to initialization, but under extreme outdoor environmental changes, the mutual-information-based direct method is more robust than the feature-based methods; (3) The hybrid method combines the strength from both direct and indirect method and outperforms them in challenging datasets. To explore the second research problem, we considered inspiring and useful applications by exploiting the camera pose together with the map data. Firstly, we invented a 3D-map augmented photo gallery application, where images’ geo-meta data are extracted with an indirect camera pose estimation method and photo sharing experience is improved with the augmentation of 3D map. Secondly, we designed an interactive video playback application, where an indirect method estimates video frames’ camera pose and the video playback is augmented with a 3D map. Thirdly, we proposed a 3D visual primitive based indoor object and outdoor scene recognition method, where the 3D primitives are accumulated from the multiview images
    corecore