11 research outputs found

    CAMMD: Context Aware Mobile Medical Devices

    Get PDF
    Telemedicine applications on a medical practitioners mobile device should be context-aware. This can vastly improve the effectiveness of mobile applications and is a step towards realising the vision of a ubiquitous telemedicine environment. The nomadic nature of a medical practitioner emphasises location, activity and time as key context-aware elements. An intelligent middleware is needed to effectively interpret and exploit these contextual elements. This paper proposes an agent-based architectural solution called Context-Aware Mobile Medical Devices (CAMMD). This framework can proactively communicate patient records to a portable device based upon the active context of its medical practitioner. An expert system is utilised to cross-reference the context-aware data of location and time against a practitioners work schedule. This proactive distribution of medical data enhances the usability and portability of mobile medical devices. The proposed methodology alleviates constraints on memory storage and enhances user interaction with the handheld device. The framework also improves utilisation of network bandwidth resources. An experimental prototype is presented highlighting the potential of this approach

    The IEC-60870-5 standard for a personal server applied to telemedicine

    Get PDF
    This paper presents a proposal of a flexible telemedicine system for remote patient monitoring. It can be used in different kind of environments where there is only available low speed transmission links like Radio Frequency. This proposal includes the use of a previous work where the IEC-60870-S standard was applied to the development of an open and flexible RTU (Remote Terminal Unit) based in open hardware, a SoCtype design using a FPGA programmed with the open core LEON and open source, so both the hardware and the ISO are open source.Junta de Andalucía p08-TIC-363

    Fingerprinting Based Indoor Localization Considering the Dynamic Nature of Wi-Fi Signals

    Get PDF
    Current localization techniques in the outdoors cannot work well in indoors. The Wi-Fi fingerprinting technique is an emerging localization technique for indoor environments. However, in this technique, the dynamic nature of WiFi signals affects the accuracy of the measurements. In this paper, we use the affinity propagation clustering method to decrease the computation complexity in location estimation. Then, we use the least variance of Received Signal Strength (RSS) measured among Access Points (APs) in each cluster. Also, we assign lower weights to alter APs for each point in a cluster, to represent the level of similarity to Test Point (TP) by considering the dynamic nature of signals in indoor environments. A method for updating the radio map and improving the results is then proposed to decrease the cost of constructing the radio map. Simulation results show that the proposed method has 22.5% improvement in average in localization results, considering one altering AP in the layout, compared to the case when only RSS subset sampling is considered for localization because of altering APs

    Activity-based Access Control Model to Hospital Information

    Full text link
    Hospital work is characterized by the need to manage multiple activities simultaneously, constant local mobility, frequently interruptions, and intense collaboration and communication. Hospital employees must handle a large amount of data that is often tied to specific work activities. This calls for a proper access control model. In this paper, we propose a novel approach, Activity-based access Control Model (ACM). Unlike conventional approaches which exploit user identity/role information, ACM leverages user’s activities to determine the access permissions for that user. In ACM, a user is assigned to perform a number of actions if s/he poses a set of satisfactory attributes. Access permissions to hospital information are granted according to user’s actions. By doing this, ACM contributes a number of advantages over conventional models: (1) facilitates user’s work; (2) reduces complexity and cost of access management. Though the design of ACM first aims to support clinical works in hospitals, it can be applied in other activity-centered environments. 1

    A Location-based File Sharing Application

    Get PDF
    Multiple computing devices in close proximity must usually rely on the Internet in order to share information, even though doing so is grossly inefficient and subject to external factors. A method to facilitate this sort of local sharing in a secure manner could help alleviate these issues. This study proposes to demonstrate the substantial demand for a more efficient and interactive means to exchange information among networks of people. We will detail how this project will result in a software protocol capable of linking mobile devices for the purpose of sending and receiving data through manipulation of available technology, pursuit of developing computer systems, and creation of an innovative program. The tasks at hand do not rely on innovation through "brute force" development of new hardware, but rather on manipulation of existing technology through revolutionary software

    A location-based communication platform: integrating file sharing with interpersonal contact

    Get PDF
    Gemstone Team FLIP (File Lending in Proximity)Sharing on the Internet, even among computing devices in close proximity, is both inefficient and inconvenient. Online services and websites do not take advantage of easily obtainable geo-locational data that can improve sharing. We at Team FLIP have extended an existing mapping system called TerpNav with functionality that allows proximate users to interact and collaborate while sharing digital information. This study demonstrates both the feasibility of and demand for a more efficient and interactive method to exchange information among proximate networks of people

    Pervasive handheld computing systems

    Get PDF
    The technological role of handheld devices is fundamentally changing. Portable computers were traditionally application specific. They were designed and optimised to deliver a specific task. However, it is now commonly acknowledged that future handheld devices need to be multi-functional and need to be capable of executing a range of high-performance applications. This thesis has coined the term pervasive handheld computing systems to refer to this type of mobile device. Portable computers are faced with a number of constraints in trying to meet these objectives. They are physically constrained by their size, their computational power, their memory resources, their power usage, and their networking ability. These constraints challenge pervasive handheld computing systems in achieving their multi-functional and high-performance requirements. This thesis proposes a two-pronged methodology to enable pervasive handheld computing systems meet their future objectives. The methodology is a fusion of two independent and yet complementary concepts. The first step utilises reconfigurable technology to enhance the physical hardware resources within the environment of a handheld device. This approach recognises that reconfigurable computing has the potential to dynamically increase the system functionality and versatility of a handheld device without major loss in performance. The second step of the methodology incorporates agent-based middleware protocols to support handheld devices to effectively manage and utilise these reconfigurable hardware resources within their environment. The thesis asserts the combined characteristics of reconfigurable computing and agent technology can meet the objectives of pervasive handheld computing systems

    Modelo de privacidad digital en inteligencia ambiental basado en sistemas multiagente

    Get PDF
    El gran desarrollo de las Tecnologías de la Información y la Comunicación utilizadas en los dominios de aplicación de la Inteligencia Ambiental (AmI), ocurrido en la última década, nos sitúa inmersos en los llamados entornos inteligentes, rodeados de una extensa variedad de dispositivos y tecnologías con capacidad de adquirir, almacenar y transmitir nuestra información personal. La complejidad y volumen de los sistemas involucrados en las aplicaciones desarrolladas en Inteligencia Ambiental hacen que seamos incapaces de conocer y controlar toda la información que estos sistemas son capaces de adquirir y transmitir, tanto si esta información ha sido proporcionada por nosotros directamente, como si ha sido adquirida de forma indirecta por otros sistemas sin nuestro conocimiento; lo que pone en riesgo la protección de nuestro derecho a la privacidad. Considerando que, el principal objetivo de la Inteligencia Ambiental es el de ofrecernos diferentes tipos de servicios personalizados en cualquier lugar y en todo momento, facilitándonos así la realización de nuestras actividades cotidianas, se ha llevado a cabo un estudio sobre las aplicaciones desarrolladas en AmI, que ha revelado la necesidad de incluir las cuestiones de tipo social y ético en el diseño del AmI, destacando entre ellas la privacidad por ser uno de los derechos fundamentales de las personas, como así queda reflejado en la Declaración Universal de los Derechos Humanos (Artículo 12). Por ello, para el verdadero desarrollo y aceptación de la Inteligencia Ambiental deberá considerarse no solo los aspectos tecnológicos, sino que, resulta fundamental tener en cuenta las implicaciones sociales y éticas. Esta es la idea del concepto “Design by Privacy” que se ha utilizado en la investigación realizada. En base a este concepto, se han establecido las políticas de privacidad del usuario según los dominios de aplicación del AmI. Partiendo de la base de que sean las propias técnicas utilizadas en AmI las que ayuden a proteger nuestra información personal, se han utilizado los agentes de los modelos de confianza como herramienta para determinar los derechos de privacidad que deben cumplir los agentes en sus comunicaciones, y que ha servido para decidir con quién compartimos nuestras opiniones privadas, minimizando de esta forma los riesgos de la privacidad de nuestra información al interaccionar con los servicios ofrecidos por las aplicaciones del AmI. Así pues, el motivo de investigación de esta tesis es el de presentar un Modelo de Privacidad Digital basado en Sistemas Multiagente, que nos ayudará a decidir en quién confiar a la hora de compartir nuestras opiniones privadas. Este modelo ha sido implementado para su validación en el entorno de experimentación del ART testbed (Agent Reputation and Trust), en el que el dominio de aplicación del AmI es el relacionado con la tasación de cuadros o pinturas de arte. Una vez implementada la manera de decidir con quién compartimos nuestra información privada, y con el fin de controlar el cumplimiento de los derechos de privacidad que se han establecido en las comunicaciones entre los agentes, se han formalizado las posibles infracciones sobre los derechos de privacidad utilizando la Institución Electrónica “Islander” como herramienta de especificación de las normas y sanciones correspondientes que deben cumplir los agentes en sus comunicaciones.The great development of Information and Communication Technologies used in the domains of application of Ambient Intelligence, which has taken place in the last decade, places us immersed in intelligent environments surrounded by a wide variety of devices and Technologies with the ability to acquire, store and transmit our personal information. The complexity and volume of the systems involved in the applications developed in Environmental Intelligence mean that we are unable to know and control all the information that these systems are able to acquire and transmit, whether this information has been provided by us directly, or whether it has Been acquired indirectly by other systems without our knowledge; Which puts at risk the protection of our right to privacy. Considering that the main objective of Environmental Intelligence is to offer different types of personalized services in any place and at all times, facilitating us to carry out our daily activities, a study has been carried out on the applications developed in AmI, which has revealed the need to take into account social and ethical issues in the design of the AmI, highlighting among them the privacy as one of the fundamental rights of the people, as reflected in the Universal Declaration of Human Rights (Article 12). For that reason, for the true development and acceptance of Ambient Intelligence, not only the technological aspects must be taken into account, but it is fundamental to consider the social and ethical implications. This is the idea of the concept "Design by Privacy" that has been used on the research carried out. Based on this concept, user privacy policies have been established and should be taken into account in the AmI application domains. Based on the idea that the techniques used in AmI are those that help protect our personal information, the agents with a trust model have been used as a tool to determine the privacy rights that agents must comply with in their communications, and that has served to decide with whom we share our private opinions, thus minimizing the risks of privacy of our information when interacting with the services offered by AmI applications. Therefore, the aim of the research of this thesis is to present a Digital Privacy Model based on Multi-Agent Systems, which will help us to decide who to trust when sharing our private opinions. This model has been implemented for validation in the experimental environment of the ART testbed (Agent Reputation and Trust), in which the domain of the AmI application, is the one related with the evaluation of art pictures. Once the way to decide with whom we share our private information has been implemented, and in order to control the compliance with the privacy rights established in the communications between the agents, possible violations of privacy rights have been formalized using the Electronic Institution "Islander" as a tool for specifying the standards and corresponding sanctions that agents must comply with in their communications.Programa Oficial de Doctorado en Ciencia y Tecnología InformáticaPresidente: Jesús García Herrero.- Secretario: Clara Benac Earle.- Vocal: Ana María Bernardos Barboll
    corecore