36,068 research outputs found

    Enabling Social Applications via Decentralized Social Data Management

    Full text link
    An unprecedented information wealth produced by online social networks, further augmented by location/collocation data, is currently fragmented across different proprietary services. Combined, it can accurately represent the social world and enable novel socially-aware applications. We present Prometheus, a socially-aware peer-to-peer service that collects social information from multiple sources into a multigraph managed in a decentralized fashion on user-contributed nodes, and exposes it through an interface implementing non-trivial social inferences while complying with user-defined access policies. Simulations and experiments on PlanetLab with emulated application workloads show the system exhibits good end-to-end response time, low communication overhead and resilience to malicious attacks.Comment: 27 pages, single ACM column, 9 figures, accepted in Special Issue of Foundations of Social Computing, ACM Transactions on Internet Technolog

    Systematizing Decentralization and Privacy: Lessons from 15 Years of Research and Deployments

    Get PDF
    Decentralized systems are a subset of distributed systems where multiple authorities control different components and no authority is fully trusted by all. This implies that any component in a decentralized system is potentially adversarial. We revise fifteen years of research on decentralization and privacy, and provide an overview of key systems, as well as key insights for designers of future systems. We show that decentralized designs can enhance privacy, integrity, and availability but also require careful trade-offs in terms of system complexity, properties provided, and degree of decentralization. These trade-offs need to be understood and navigated by designers. We argue that a combination of insights from cryptography, distributed systems, and mechanism design, aligned with the development of adequate incentives, are necessary to build scalable and successful privacy-preserving decentralized systems

    Options for Securing RTP Sessions

    Get PDF
    The Real-time Transport Protocol (RTP) is used in a large number of different application domains and environments. This heterogeneity implies that different security mechanisms are needed to provide services such as confidentiality, integrity, and source authentication of RTP and RTP Control Protocol (RTCP) packets suitable for the various environments. The range of solutions makes it difficult for RTP-based application developers to pick the most suitable mechanism. This document provides an overview of a number of security solutions for RTP and gives guidance for developers on how to choose the appropriate security mechanism

    Confidentiality-Preserving Publish/Subscribe: A Survey

    Full text link
    Publish/subscribe (pub/sub) is an attractive communication paradigm for large-scale distributed applications running across multiple administrative domains. Pub/sub allows event-based information dissemination based on constraints on the nature of the data rather than on pre-established communication channels. It is a natural fit for deployment in untrusted environments such as public clouds linking applications across multiple sites. However, pub/sub in untrusted environments lead to major confidentiality concerns stemming from the content-centric nature of the communications. This survey classifies and analyzes different approaches to confidentiality preservation for pub/sub, from applications of trust and access control models to novel encryption techniques. It provides an overview of the current challenges posed by confidentiality concerns and points to future research directions in this promising field

    A Human-centric Perspective on Digital Consenting: The Case of GAFAM

    Get PDF
    According to different legal frameworks such as the European General Data Protection Regulation (GDPR), an end-user's consent constitutes one of the well-known legal bases for personal data processing. However, research has indicated that the majority of end-users have difficulty in understanding what they are consenting to in the digital world. Moreover, it has been demonstrated that marginalized people are confronted with even more difficulties when dealing with their own digital privacy. In this research, we use an enactivist perspective from cognitive science to develop a basic human-centric framework for digital consenting. We argue that the action of consenting is a sociocognitive action and includes cognitive, collective, and contextual aspects. Based on the developed theoretical framework, we present our qualitative evaluation of the consent-obtaining mechanisms implemented and used by the five big tech companies, i.e. Google, Amazon, Facebook, Apple, and Microsoft (GAFAM). The evaluation shows that these companies have failed in their efforts to empower end-users by considering the human-centric aspects of the action of consenting. We use this approach to argue that their consent-obtaining mechanisms violate principles of fairness, accountability and transparency. We then suggest that our approach may raise doubts about the lawfulness of the obtained consent—particularly considering the basic requirements of lawful consent within the legal framework of the GDPR

    Good practice guidance for the providers of social networking and other user-interactive services

    Get PDF
    • …
    corecore