4 research outputs found

    Licensed Shared Access Evolution to Provide Exclusive and Dynamic Shared Spectrum Access for Novel 5G Use Cases

    Get PDF
    This chapter studies the Licensed Shared Access (LSA) concept, which was initially developed to enable the use of the vacant spectrum resources in 2.3–2.4 GHz band for mobile broadband (MBB) through long-term static licenses. The LSA system was developed to guarantee LSA licensees a predictable quality of service (QoS) and exclusive access to shared spectrum resources. This chapter describes the development and architecture of LSA for 2.3–2.4 GHz band and compares the LSA briefly to the Spectrum Access System (SAS) concept developed in the USA. 5G and its new use cases require a more dynamic approach to access shared spectrum resources than the LSA system developed for 2.3–2.4 GHz band can provide. Thus, a concept called LSA evolution is currently under development. The novel concepts introduced in LSA evolution include spectrum sensing, short-term license periods, possibility to allocate spectrum locally, and support for co-primary sharing, which can guarantee the quality of service (QoS) from spectrum perspective. The chapter also describes a demonstration of LSA evolution system with spectrum user prioritization, which was created for Programme Making and Special Events (PMSE) use case

    Regulatory challenges and implications of the European electronic communications code (EECC) for local mobile communication network business

    Get PDF
    Regulatory provisions pose legal constraints on deploying mobile communication networks and related services. Local 5G and upcoming 6G networks, particularly those that are independent of the big mobile network operators (MNOs), face new challenges due to the incoherent harmonization and implementation of the regulatory provisions and the standby approach undertaken by many EU member countries. This paper analyses the European Electronic Communications Code (EECC) Directive from the perspective of local mobile communication networks by combining business model innovation and legitimacy approaches in an ecosystemic context. Based on the analysis, we recommend regulators focus on terminology, spectrum management, access and interconnection, security and privacy, and competition when enabling local mobile communications business

    Techno-economic assessment of 5G infrastructure sharing business models in rural areas

    Get PDF
    How cost-efficient are potential infrastructure sharing business models for the 5G era (and beyond)? This significant question needs to be addressed if we are to deliver universal affordable broadband in line with Target 9.1 of the UN Sustainable Development Goals. Although almost two-thirds of the global population is now connected, many users still lack access to high-speed and reliable broadband connectivity. Indeed, some of the largest connectivity issues are associated with those living in areas of low economic viability. Consequently, this assessment evaluates the cost implications of different infrastructure sharing business models using a techno-economic assessment framework. The results indicate that a rural 5G neutral host network (NHN) strategy helps to reduce total cost between 10 and 50% compared with other sharing strategies. We also find that, compared to a baseline strategy with No Sharing, the net present value of rural 5G sharing strategies can earn between 30 and 90% more profit. The network upgrades to 5G using various sharing strategies are most sensitive to changes in the average revenue per user, the adoption rate, and the amount of existing site infrastructure. For example, the results from this study show that a 20% variation in demand revenue is estimated to increase the net present value of the sharing strategies by 2–5 times compared to the No Sharing strategy. Similarly, a 10% increase in existing infrastructure lowers the net present value by 8–30%. The infrastructure sharing strategies outlined in this study have the potential to enhance network viability while bridging the digital divide in remote and rural locations
    corecore