66 research outputs found

    Camera Spatial Frequency Response Derived from Pictorial Natural Scenes

    Get PDF
    Camera system performance is a prominent part of many aspects of imaging science and computer vision. There are many aspects to camera performance that determines how accurately the image represents the scene, including measurements of colour accuracy, tone reproduction, geometric distortions, and image noise evaluation. The research conducted in this thesis focuses on the Modulation Transfer Function (MTF), a widely used camera performance measurement employed to describe resolution and sharpness. Traditionally measured under controlled conditions with characterised test charts, the MTF is a measurement restricted to laboratory settings. The MTF is based on linear system theory, meaning the input to output must follow a straightforward correlation. Established methods for measuring the camera system MTF include the ISO12233:2017 for measuring the edge-based Spatial Frequency Response (e-SFR), a sister measure of the MTF designed for measuring discrete systems. Many modern camera systems incorporate non-linear, highly adaptive image signal processing (ISP) to improve image quality. As a result, system performance becomes scene and processing dependant, adapting to the scene contents captured by the camera. Established test chart based MTF/SFR methods do not describe this adaptive nature; they only provide the response of the camera to a test chart signal. Further, with the increased use of Deep Neural Networks (DNN) for image recognition tasks and autonomous vision systems, there is an increased need for monitoring system performance outside laboratory conditions in real-time, i.e. live-MTF. Such measurements would assist in monitoring the camera systems to ensure they are fully operational for decision critical tasks. This thesis presents research conducted to develop a novel automated methodology that estimates the standard e-SFR directly from pictorial natural scenes. This methodology has the potential to produce scene dependant and real-time camera system performance measurements, opening new possibilities in imaging science and allowing live monitoring/calibration of systems for autonomous computer vision applications. The proposed methodology incorporates many well-established image processes, as well as others developed for specific purposes. It is presented in two parts. Firstly, the Natural Scene derived SFR (NS-SFR) are obtained from isolated captured scene step-edges, after verifying that these edges have the correct profile for implementing into the slanted-edge algorithm. The resulting NS-SFRs are shown to be a function of both camera system performance and scene contents. The second part of the methodology uses a series of derived NS-SFRs to estimate the system e-SFR, as per the ISO12233 standard. This is achieved by applying a sequence of thresholds to segment the most likely data corresponding to the system performance. These thresholds a) group the expected optical performance variation across the imaging circle within radial distance segments, b) obtain the highest performance NS-SFRs per segment and c) select the NS-SFRs with input edge and region of interest (ROI) parameter ranges shown to introduce minimal e-SFR variation. The selected NS-SFRs are averaged per radial segment to estimate system e-SFRs across the field of view. A weighted average of these estimates provides an overall system performance estimation. This methodology is implemented for e-SFR estimation of three characterised camera systems, two near-linear and one highly non-linear. Investigations are conducted using large, diverse image datasets as well as restricting scene content and the number of images used for the estimation. The resulting estimates are comparable to ISO12233 e-SFRs derived from test chart inputs for the near-linear systems. Overall estimate stays within one standard deviation of the equivalent test chart measurement. Results from the highly non-linear system indicate scene and processing dependency, potentially leading to a more representative SFR measure than the current chart-based approaches for such systems. These results suggest that the proposed method is a viable alternative to the ISO technique

    Multimedia Forensics

    Get PDF
    This book is open access. Media forensics has never been more relevant to societal life. Not only media content represents an ever-increasing share of the data traveling on the net and the preferred communications means for most users, it has also become integral part of most innovative applications in the digital information ecosystem that serves various sectors of society, from the entertainment, to journalism, to politics. Undoubtedly, the advances in deep learning and computational imaging contributed significantly to this outcome. The underlying technologies that drive this trend, however, also pose a profound challenge in establishing trust in what we see, hear, and read, and make media content the preferred target of malicious attacks. In this new threat landscape powered by innovative imaging technologies and sophisticated tools, based on autoencoders and generative adversarial networks, this book fills an important gap. It presents a comprehensive review of state-of-the-art forensics capabilities that relate to media attribution, integrity and authenticity verification, and counter forensics. Its content is developed to provide practitioners, researchers, photo and video enthusiasts, and students a holistic view of the field

    Scene-Dependency of Spatial Image Quality Metrics

    Get PDF
    This thesis is concerned with the measurement of spatial imaging performance and the modelling of spatial image quality in digital capturing systems. Spatial imaging performance and image quality relate to the objective and subjective reproduction of luminance contrast signals by the system, respectively; they are critical to overall perceived image quality. The Modulation Transfer Function (MTF) and Noise Power Spectrum (NPS) describe the signal (contrast) transfer and noise characteristics of a system, respectively, with respect to spatial frequency. They are both, strictly speaking, only applicable to linear systems since they are founded upon linear system theory. Many contemporary capture systems use adaptive image signal processing, such as denoising and sharpening, to optimise output image quality. These non-linear processes change their behaviour according to characteristics of the input signal (i.e. the scene being captured). This behaviour renders system performance “scene-dependent” and difficult to measure accurately. The MTF and NPS are traditionally measured from test charts containing suitable predefined signals (e.g. edges, sinusoidal exposures, noise or uniform luminance patches). These signals trigger adaptive processes at uncharacteristic levels since they are unrepresentative of natural scene content. Thus, for systems using adaptive processes, the resultant MTFs and NPSs are not representative of performance “in the field” (i.e. capturing real scenes). Spatial image quality metrics for capturing systems aim to predict the relationship between MTF and NPS measurements and subjective ratings of image quality. They cascade both measures with contrast sensitivity functions that describe human visual sensitivity with respect to spatial frequency. The most recent metrics designed for adaptive systems use MTFs measured using the dead leaves test chart that is more representative of natural scene content than the abovementioned test charts. This marks a step toward modelling image quality with respect to real scene signals. This thesis presents novel scene-and-process-dependent MTFs (SPD-MTF) and NPSs (SPDNPS). They are measured from imaged pictorial scene (or dead leaves target) signals to account for system scene-dependency. Further, a number of spatial image quality metrics are revised to account for capture system and visual scene-dependency. Their MTF and NPS parameters were substituted for SPD-MTFs and SPD-NPSs. Likewise, their standard visual functions were substituted for contextual detection (cCSF) or discrimination (cVPF) functions. In addition, two novel spatial image quality metrics are presented (the log Noise Equivalent Quanta (NEQ) and Visual log NEQ) that implement SPD-MTFs and SPD-NPSs. The metrics, SPD-MTFs and SPD-NPSs were validated by analysing measurements from simulated image capture pipelines that applied either linear or adaptive image signal processing. The SPD-NPS measures displayed little evidence of measurement error, and the metrics performed most accurately when they used SPD-NPSs measured from images of scenes. The benefit of deriving SPD-MTFs from images of scenes was traded-off, however, against measurement bias. Most metrics performed most accurately with SPD-MTFs derived from dead leaves signals. Implementing the cCSF or cVPF did not increase metric accuracy. The log NEQ and Visual log NEQ metrics proposed in this thesis were highly competitive, outperforming metrics of the same genre. They were also more consistent than the IEEE P1858 Camera Phone Image Quality (CPIQ) metric when their input parameters were modified. The advantages and limitations of all performance measures and metrics were discussed, as well as their practical implementation and relevant applications

    Recent Advances in Signal Processing

    Get PDF
    The signal processing task is a very critical issue in the majority of new technological inventions and challenges in a variety of applications in both science and engineering fields. Classical signal processing techniques have largely worked with mathematical models that are linear, local, stationary, and Gaussian. They have always favored closed-form tractability over real-world accuracy. These constraints were imposed by the lack of powerful computing tools. During the last few decades, signal processing theories, developments, and applications have matured rapidly and now include tools from many areas of mathematics, computer science, physics, and engineering. This book is targeted primarily toward both students and researchers who want to be exposed to a wide variety of signal processing techniques and algorithms. It includes 27 chapters that can be categorized into five different areas depending on the application at hand. These five categories are ordered to address image processing, speech processing, communication systems, time-series analysis, and educational packages respectively. The book has the advantage of providing a collection of applications that are completely independent and self-contained; thus, the interested reader can choose any chapter and skip to another without losing continuity

    Sensor Signal and Information Processing II

    Get PDF
    In the current age of information explosion, newly invented technological sensors and software are now tightly integrated with our everyday lives. Many sensor processing algorithms have incorporated some forms of computational intelligence as part of their core framework in problem solving. These algorithms have the capacity to generalize and discover knowledge for themselves and learn new information whenever unseen data are captured. The primary aim of sensor processing is to develop techniques to interpret, understand, and act on information contained in the data. The interest of this book is in developing intelligent signal processing in order to pave the way for smart sensors. This involves mathematical advancement of nonlinear signal processing theory and its applications that extend far beyond traditional techniques. It bridges the boundary between theory and application, developing novel theoretically inspired methodologies targeting both longstanding and emergent signal processing applications. The topic ranges from phishing detection to integration of terrestrial laser scanning, and from fault diagnosis to bio-inspiring filtering. The book will appeal to established practitioners, along with researchers and students in the emerging field of smart sensors processing

    Multimedia Forensics

    Get PDF
    This book is open access. Media forensics has never been more relevant to societal life. Not only media content represents an ever-increasing share of the data traveling on the net and the preferred communications means for most users, it has also become integral part of most innovative applications in the digital information ecosystem that serves various sectors of society, from the entertainment, to journalism, to politics. Undoubtedly, the advances in deep learning and computational imaging contributed significantly to this outcome. The underlying technologies that drive this trend, however, also pose a profound challenge in establishing trust in what we see, hear, and read, and make media content the preferred target of malicious attacks. In this new threat landscape powered by innovative imaging technologies and sophisticated tools, based on autoencoders and generative adversarial networks, this book fills an important gap. It presents a comprehensive review of state-of-the-art forensics capabilities that relate to media attribution, integrity and authenticity verification, and counter forensics. Its content is developed to provide practitioners, researchers, photo and video enthusiasts, and students a holistic view of the field

    Pixel level data-dependent triangulation with its applications

    Get PDF
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Media Forensics and DeepFakes: an overview

    Full text link
    With the rapid progress of recent years, techniques that generate and manipulate multimedia content can now guarantee a very advanced level of realism. The boundary between real and synthetic media has become very thin. On the one hand, this opens the door to a series of exciting applications in different fields such as creative arts, advertising, film production, video games. On the other hand, it poses enormous security threats. Software packages freely available on the web allow any individual, without special skills, to create very realistic fake images and videos. So-called deepfakes can be used to manipulate public opinion during elections, commit fraud, discredit or blackmail people. Potential abuses are limited only by human imagination. Therefore, there is an urgent need for automated tools capable of detecting false multimedia content and avoiding the spread of dangerous false information. This review paper aims to present an analysis of the methods for visual media integrity verification, that is, the detection of manipulated images and videos. Special emphasis will be placed on the emerging phenomenon of deepfakes and, from the point of view of the forensic analyst, on modern data-driven forensic methods. The analysis will help to highlight the limits of current forensic tools, the most relevant issues, the upcoming challenges, and suggest future directions for research
    • …
    corecore