55,761 research outputs found

    Privacy-Preserving Federated Deep Clustering based on GAN

    Full text link
    Federated clustering (FC) is an essential extension of centralized clustering designed for the federated setting, wherein the challenge lies in constructing a global similarity measure without the need to share private data. Conventional approaches to FC typically adopt extensions of centralized methods, like K-means and fuzzy c-means. However, these methods are susceptible to non-independent-and-identically-distributed (non-IID) data among clients, leading to suboptimal performance, particularly with high-dimensional data. In this paper, we present a novel approach to address these limitations by proposing a Privacy-Preserving Federated Deep Clustering based on Generative Adversarial Networks (GANs). Each client trains a local generative adversarial network (GAN) locally and uploads the synthetic data to the server. The server applies a deep clustering network on the synthetic data to establish kk cluster centroids, which are then downloaded to the clients for cluster assignment. Theoretical analysis demonstrates that the GAN-generated samples, shared among clients, inherently uphold certain privacy guarantees, safeguarding the confidentiality of individual data. Furthermore, extensive experimental evaluations showcase the effectiveness and utility of our proposed method in achieving accurate and privacy-preserving federated clustering

    Federated clustering with GAN-based data synthesis

    Full text link
    Federated clustering (FC) is an extension of centralized clustering in federated settings. The key here is how to construct a global similarity measure without sharing private data, since the local similarity may be insufficient to group local data correctly and the similarity of samples across clients cannot be directly measured due to privacy constraints. Obviously, the most straightforward way to analyze FC is to employ the methods extended from centralized ones, such as K-means (KM) and fuzzy c-means (FCM). However, they are vulnerable to non independent-and-identically-distributed (non-IID) data among clients. To handle this, we propose a new federated clustering framework, named synthetic data aided federated clustering (SDA-FC). It trains generative adversarial network locally in each client and uploads the generated synthetic data to the server, where KM or FCM is performed on the synthetic data. The synthetic data can make the model immune to the non-IID problem and enable us to capture the global similarity characteristics more effectively without sharing private data. Comprehensive experiments reveals the advantages of SDA-FC, including superior performance in addressing the non-IID problem and the device failures

    Privacy-Preserving and Outsourced Multi-User k-Means Clustering

    Get PDF
    Many techniques for privacy-preserving data mining (PPDM) have been investigated over the past decade. Often, the entities involved in the data mining process are end-users or organizations with limited computing and storage resources. As a result, such entities may want to refrain from participating in the PPDM process. To overcome this issue and to take many other benefits of cloud computing, outsourcing PPDM tasks to the cloud environment has recently gained special attention. We consider the scenario where n entities outsource their databases (in encrypted format) to the cloud and ask the cloud to perform the clustering task on their combined data in a privacy-preserving manner. We term such a process as privacy-preserving and outsourced distributed clustering (PPODC). In this paper, we propose a novel and efficient solution to the PPODC problem based on k-means clustering algorithm. The main novelty of our solution lies in avoiding the secure division operations required in computing cluster centers altogether through an efficient transformation technique. Our solution builds the clusters securely in an iterative fashion and returns the final cluster centers to all entities when a pre-determined termination condition holds. The proposed solution protects data confidentiality of all the participating entities under the standard semi-honest model. To the best of our knowledge, ours is the first work to discuss and propose a comprehensive solution to the PPODC problem that incurs negligible cost on the participating entities. We theoretically estimate both the computation and communication costs of the proposed protocol and also demonstrate its practical value through experiments on a real dataset.Comment: 16 pages, 2 figures, 5 table

    Privacy Preserving Multi-Server k-means Computation over Horizontally Partitioned Data

    Full text link
    The k-means clustering is one of the most popular clustering algorithms in data mining. Recently a lot of research has been concentrated on the algorithm when the dataset is divided into multiple parties or when the dataset is too large to be handled by the data owner. In the latter case, usually some servers are hired to perform the task of clustering. The dataset is divided by the data owner among the servers who together perform the k-means and return the cluster labels to the owner. The major challenge in this method is to prevent the servers from gaining substantial information about the actual data of the owner. Several algorithms have been designed in the past that provide cryptographic solutions to perform privacy preserving k-means. We provide a new method to perform k-means over a large set using multiple servers. Our technique avoids heavy cryptographic computations and instead we use a simple randomization technique to preserve the privacy of the data. The k-means computed has exactly the same efficiency and accuracy as the k-means computed over the original dataset without any randomization. We argue that our algorithm is secure against honest but curious and passive adversary.Comment: 19 pages, 4 tables. International Conference on Information Systems Security. Springer, Cham, 201

    On Collaborative Predictive Blacklisting

    Full text link
    Collaborative predictive blacklisting (CPB) allows to forecast future attack sources based on logs and alerts contributed by multiple organizations. Unfortunately, however, research on CPB has only focused on increasing the number of predicted attacks but has not considered the impact on false positives and false negatives. Moreover, sharing alerts is often hindered by confidentiality, trust, and liability issues, which motivates the need for privacy-preserving approaches to the problem. In this paper, we present a measurement study of state-of-the-art CPB techniques, aiming to shed light on the actual impact of collaboration. To this end, we reproduce and measure two systems: a non privacy-friendly one that uses a trusted coordinating party with access to all alerts (Soldo et al., 2010) and a peer-to-peer one using privacy-preserving data sharing (Freudiger et al., 2015). We show that, while collaboration boosts the number of predicted attacks, it also yields high false positives, ultimately leading to poor accuracy. This motivates us to present a hybrid approach, using a semi-trusted central entity, aiming to increase utility from collaboration while, at the same time, limiting information disclosure and false positives. This leads to a better trade-off of true and false positive rates, while at the same time addressing privacy concerns.Comment: A preliminary version of this paper appears in ACM SIGCOMM's Computer Communication Review (Volume 48 Issue 5, October 2018). This is the full versio
    corecore