3,126 research outputs found

    Locally convergent nonlinear observers

    Get PDF
    The article of record as published may be located at http://dx.doi.org/10.1137/S0363012900368612We introduce a new method for the design of observers for nonlinear systems using backstepping. The method is applicable to a class of nonlinear systems slighter larger than those treated by Gauthier, Hammouri, and Othman [IEEE Trans. Automat. Control, 27 (1992), pp. 875ďľ–880]. They presented an observer design method that is globally convergent using high gain. In contrast to theirs, our observer is not high gain, but it is only locally convergent. If the initial estimation error is not too large, then the estimation error goes to zero exponentially. A design algorithm is presented

    Observer design for systems with an energy-preserving non-linearity

    Full text link
    Observer design is considered for a class of non-linear systems whose non-linear part is energy preserving. A strategy to construct convergent observers for this class of non-linear system is presented. The approach has the advantage that it is possible, via convex programming, to prove whether the constructed observer converges, in contrast to several existing approaches to observer design for non-linear systems. Finally, the developed methods are applied to the Lorenz attractor and to a low order model for shear fluid flow

    Non-linear Symmetry-preserving Observer on Lie Groups

    Full text link
    In this paper we give a geometrical framework for the design of observers on finite-dimensional Lie groups for systems which possess some specific symmetries. The design and the error (between true and estimated state) equation are explicit and intrinsic. We consider also a particular case: left-invariant systems on Lie groups with right equivariant output. The theory yields a class of observers such that error equation is autonomous. The observers converge locally around any trajectory, and the global behavior is independent from the trajectory, which reminds of the linear stationary case.Comment: 12 pages. Submitted. Preliminary version publicated in french in the CIFA proceedings and IFAC0

    Symmetry-preserving Observers

    Full text link
    This paper presents three non-linear observers on three examples of engineering interest: a chemical reactor, a non-holonomic car, and an inertial navigation system. For each example, the design is based on physical symmetries. This motivates the theoretical development of invariant observers, i.e, symmetry-preserving observers. We consider an observer to consist in a copy of the system equation and a correction term, and we give a constructive method (based on the Cartan moving-frame method) to find all the symmetry-preserving correction terms. They rely on an invariant frame (a classical notion) and on an invariant output-error, a less standard notion precisely defined here. For each example, the convergence analysis relies also on symmetries consideration with a key use of invariant state-errors. For the non-holonomic car and the inertial navigation system, the invariant state-errors are shown to obey an autonomous differential equation independent of the system trajectory. This allows us to prove convergence, with almost global stability for the non-holonomic car and with semi-global stability for the inertial navigation system. Simulations including noise and bias show the practical interest of such invariant asymptotic observers for the inertial navigation system.Comment: To be published in IEEE Automatic Contro

    Local observers on linear Lie groups with linear estimation error dynamics

    Get PDF
    This paper proposes local exponential observers for systems on linear Lie groups. We study two different classes of systems. In the first class, the full state of the system evolves on a linear Lie group and is available for measurement. In the second class, only part of the system's state evolves on a linear Lie group and this portion of the state is available for measurement. In each case, we propose two different observer designs. We show that, depending on the observer chosen, local exponential stability of one of the two observation error dynamics, left- or right-invariant error dynamics, is obtained. For the first class of systems these results are developed by showing that the estimation error dynamics are differentially equivalent to a stable linear differential equation on a vector space. For the second class of system, the estimation error dynamics are almost linear. We illustrate these observer designs on an attitude estimation problem

    Transverse exponential stability and applications

    Get PDF
    We investigate how the following properties are related to each other: i)-A manifold is "transversally" exponentially stable; ii)-The "transverse" linearization along any solution in the manifold is exponentially stable; iii)-There exists a field of positive definite quadratic forms whose restrictions to the directions transversal to the manifold are decreasing along the flow. We illustrate their relevance with the study of exponential incremental stability. Finally, we apply these results to two control design problems, nonlinear observer design and synchronization. In particular, we provide necessary and sufficient conditions for the design of nonlinear observer and of nonlinear synchronizer with exponential convergence property

    On the Existence of a Kazantzis-Kravaris/Luenberger Observer

    Get PDF
    We state sufficient conditions for the existence, on a given open set, of the extension, to nonlinear systems, of the Luenberger observer as it has been proposed by Kazantzis and Kravaris. We prove it is sufficient to choose the dimension of the system, giving the observer, less than or equal to 2 + twice the dimension of the state to be observed. We show that it is sufficient to know only an approximation of the solution of a PDE, needed for the implementation. We establish a link with high gain observers. Finally we extend our results to systems satisfying an unboundedness observability property
    • …
    corecore