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Abstract. We introduce a new method for the design of observers for nonlinear systems using
backstepping. The method is applicable to a class of nonlinear systems slighter larger than those
treated by Gauthier, Hammouri, and Othman [IEEE Trans. Automat. Control, 27 (1992), pp. 875–
880]. They presented an observer design method that is globally convergent using high gain. In
contrast to theirs, our observer is not high gain, but it is only locally convergent. If the initial
estimation error is not too large, then the estimation error goes to zero exponentially. A design
algorithm is presented.
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1. Introduction. The problem of estimating the state of a dynamical system
from partial and possibly noisy measurements has a long history. In its nonlinear state
space form, one assumes that the dynamics satisfies a known nonlinear differential
equation with unknown initial condition and the measurement is a known nonlinear
function of the state

ẋ = f(x),

x(0) = x0,(1.1)

y = h(x).

The linear form of the problem is

ẋ = Ax,

x(0) = x0,(1.2)

y = Cx.

One is given an estimate x̂0 of x0 and the observations y(s), 0 ≤ s ≤ t, up to time t.
The problem is to generate an estimate x̂(t) of x(t) in real time, as the process evolves.
The estimate should converge to the true state as t → ∞. Ideally the estimation
process should be robust to noise both in the dynamics and in the observations, to
the initial state error, and also to modeling errors in the functions f, h. Furthermore,
the error should converge to zero quickly.

One way of approaching this problem is to assume that the dynamics, the initial
condition, and the observations are corrupted by noises with known distributions and
then to find the conditional density of the state given the past observations. If the
dynamics and observations are linear functions of the state and if the noises and
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the initial condition are independent and Gaussian, then the conditional density is
Gaussian and explicitly computable. Wiener [28] solved this problem for stationary
Gaussian processes using the method of spectral factorization. Kalman [12], [13]
extended this to nonstationary Gaussian processes and reduced the problem to solving
an off-line Riccati equation and an on-line linear differential equation driven by the
observations.

When the dynamics and/or observations are nonlinear the unnormalized condi-
tional density satisfies the Zakai equation, a parabolic PDE driven by the observations
[4]. It is a very difficult task to accurately compute its solution in real time for all
but the smallest state dimensions.

The extended Kalman filter [10] is a widely used alternative method for estimating
the state of a nonlinear system. It is obtained by linearizing the nonlinear dynamics
and the observation along the trajectory of the estimate. It requires that the on-line
solution of a Riccati differential equation and a linear differential equation be driven
by the observations. The extended Kalman filter is globally defined but it is only a
local method. Under certain conditions, the estimate converges to the true state if
the initial estimation error is not too large [1], [23].

There are several nonstochastic approaches to state estimation. For linear systems
(1.2), Luenberger [19] developed the concept of an observer. This is another linear
dynamical system that is driven by the observations in such a way that the error
dynamics is asymptotically stable.

Several nonstochastic methods have been proposed for nonlinear estimation. Some
of these are surveyed by Misawa and Hedrick [21]. Other methods include lineariza-
tion [16], [2], [17], H∞ methods [15], bilinear systems [29], and high gain observers
[3], [5], [6], [7], [8], [9], [24], [25], [26], [27].

This paper describes a simple and efficient method for the design of observers for a
broad class of nonlinear systems based on backstepping. The backstepping technique
has been used extensively to design stabilizing state feedback control laws [18], [20].
The assumptions on the system are that it be smooth and observable in an appropriate
sense. The method is applicable to systems whose error dynamics are not necessarily
linearizable by a change of coordinates and input/output injection [16], [2], [17]. It is
applicable to a slightly larger class of systems than the high gain observer of Gauthier,
Hammouri, and Othman [8]. The latter result can be applied to systems that can be
globally described in observable form while the backstepping approach requires only
a local observable form. Moreover, backstepping is not a high gain design procedure
and hence only local convergence is guaranteed. An explicit formula for the observer
gain is derived. The gains are functions of the state of the observer. The gains can
be derived off-line through an algorithm presented below. The observer is defined on
an arbitrarily large compact subset of the state space but is only locally convergent.
We shall prove that the estimate converges exponentially to the true state if the state
starts in a compact positively invariant set and the initial estimation error is not too
large.

The paper is organized as follows. In section 2 the backstepping approach to
observer design is illustrated for a scalar output system without inputs in observable
form. In section 3 this is generalized to systems in observable form with vector output
and no inputs. In section 4, this technique is generalized to systems that locally can
be described in observable form. Systems with inputs are discussed in section 5. In
section 6, the relative perfomance of the high gain observer and the backstepping
observer are discussed. We close with examples in section 7.
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2. The backstepping observer. Consider a smooth nonlinear system in ob-
servable form:

y = x1,

ẋ1 = x2,

ẋ2 = x3,

...(2.1)

ẋn−1 = xn,

ẋn = fn(x).

The state x is n dimensional and the output y is one dimensional. There is no input.
Later we shall relax these assumptions. By smooth we mean Cr for r sufficiently
large.

The backstepping observer will be in the following form:

˙̂x1 = x̂2 + ψ1(x̂)(x1 − x̂1),
˙̂x2 = x̂3 + ψ2(x̂)(x1 − x̂1),

...(2.2)
˙̂xn−1 = x̂n + ψn−1(x̂)(x1 − x̂1),

˙̂xn = fn(x̂) + ψn(x̂)(x1 − x̂1).

The error e = x− x̂ dynamics is given by

ė1 = e2 − ψ1(x̂)e1,

ė2 = e3 − ψ2(x̂)e1,

...(2.3)

ėn−1 = en − ψn−1(x̂)e1,

ėn = fn(x)− fn(x̂)− ψn(x̂)e1.

The problem of observer design is to find gains ψi(x̂), 1 ≤ i ≤ n, so that e(t) → 0 as
t → ∞.

Notice that the error dynamics (2.3) is dependent on both e and x̂. The combined
system, consisting of the system and its observer, can be described in x, x̂ coordinates
(2.1), (2.2), in e, x̂ coordinates (2.2), (2.3), or in x, e coordinates (2.1), (2.3).

Suppose that K is a compact subset of x space, which is positively invariant under
(2.1), i.e., if a trajectory starts in K, then it remains in K for all future times. The set
K × {e = 0} is a positively invariant set of the combined system (2.1), (2.3). Using
a backstepping approach [18], we will construct a local Lyapunov function for the
combined system to prove local exponential convergence to this positively invariant
set. The observer gains ψi will be chosen in the course of this construction.

We employ the following notation: an error term O(e)k is a function of x̂, e such
that on any compact subset L of x̂ space there exists a constant N > 0, δ > 0 such
that

|O(e)k| ≤ N |e|k(2.4)

for all x̂ ∈ L and all |e| < δ. We abbreviate O(e)1 as O(e).
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We now proceed with the construction of the backstepping observer on a compact,
positively invariant set K and show its local convergence.

Define z1 = e1 and V1 = 1
2z

2
1 ; then

V̇1 = z1ż1 = −c1z
2
1 + z1z2 + O(e)3,

where c1 > 0 and z2 is the linear function of e that satisfies z2 = c1z1 + ż1 + O(e)2.
If n = 1, we choose

ψ1(x̂) = c1 +
df1

dx1
(x̂1)

so that the auxiliary variable z2 = 0 and

V̇1 = z1ż1 = −c1z
2
1 + O(e)3.(2.5)

If n ≥ 2, then z1, z2 and e1, e2 are linearly related by[
z1

z2

]
=

[
1 0

b2,1 − ψ1 1

] [
e1

e2

]
,(2.6)

where

b2,1 = c1.(2.7)

Define V2 = V1 + 1
2z

2
2 ; then

V̇2 = −c1z
2
1 − c2z

2
2 + z2z3 + O(e)3,

where c2 > 0 and z3 is the linear function of e that satisfies z3 = z1+c2z2+ ż2+O(e)2.
Notice that z2, z3 depend on the as yet unspecified observer gains ψ1(x̂), ψ2(x̂).

If n = 2, then we would like to choose the gains so that the auxiliary variable z3

is 0, for then

V̇2 = −c1z
2
1 − c2z

2
2 + O(e)3.(2.8)

Now

z3 = z1 + c2z2 + ż2 + O(e)2

= (b3,1 + f2;1 − ψ2)e1 + (b3,2 + f2,2 − ψ1)e2,

where

fn;i =
∂fn
∂xi

(x̂),

b3,1 = 1 + c2(b2,1 − ψ1) + (b2,1 − ψ1)
′ − (b2,1 − ψ1)ψ1,

b3,2 = c1 + c2.(2.9)

We denote differentiation along the observer dynamics when e1 = 0 by ′. For an
n dimensional observer (2.2), the operation ′ is defined on functions φ(x̂) by

φ′(x̂) =

n−1∑
j=1

∂φ

∂x̂j
(x̂)x̂j+1 +

∂φ

∂x̂n
(x̂)fn(x̂).
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Notice that ′ does not involve the gains ψi and

φ′ = φ̇ + O(e).

If n = 2, we successively define

ψ1(x̂) = b3,2(x̂) + f2;2(x̂),

ψ2(x̂) = b3,1(x̂) + f2;1(x̂);

then (2.8) holds. Notice that the gains are functions of x̂ alone.
If n ≥ 3, we define z1, z2 as before (2.6) and z3 as a linear function of e so that

z3 = z1 + c2z2 + ż2 + O(e)2.

By a calculation similar to the above, we see that

z3 = (b3,1 − ψ2)e1 + (b3,2 − ψ1)e2 + e3,(2.10)

where b3,1, b3,2 are given by (2.9). Define V3 = V2 + 1
2z

2
3 ; then

V̇3 = −c1z
2
1 − c2z

2
2 − c3z

2
3 + z3z4 + O(e)3,

where c3 > 0 and z4 is the linear function of e that satisfies z4 = z2+c3z3+ ż3+O(e)2.
If n = 3, we would like to choose the observer gains so that the auxiliary variable

z4 is 0. After a straightforward calculation, one finds that

z4 = (b4,1 + f3;1 − ψ3)e1 + (b4,2 + f3;2 − ψ2)e2

+ (b4,3 + f3;3 − ψ1)e3,(2.11)

where b4,j = b4,j(x̂) are functions only of x̂ and b4,j depends only on c, ψk for 1 ≤
k < 3− j and br,s for 1 < r < 4, 1 ≤ r − s ≤ 4− j:

b4,1 = b2,1 − ψ1 + c3(b3,1 − ψ2) + (b3,1 − ψ2)
′ − (b3,1 − ψ2)ψ1 − (b3,2 − ψ1)ψ2,

b4,2 = 1 + c3(b3,2 − ψ1) + (b3,2 − ψ1)
′ + b3,1,(2.12)

b4,3 = c3 + b3,2.

Hence we can successively solve (2.12) for the desired observer gains,

ψ1 = b4,3 + f3;3,

ψ2 = b4,2 + f3;2,

ψ3 = b4,1 + f3;1.

Turning to the n dimensional system in observable form, the variables z1, . . . , zn+1

are defined as follows:

z1 = e1,

z2 = c1z1 + ż1 + O(e)2,

z3 = z1 + c2z2 + ż2 + O(e)2,

...(2.13)

zi = zi−2 + ci−1zi−1 + żi−1 + O(e)2,

...

zn+1 = zn−1 + cnzn + żn + O(e)2,
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where ci > 0 and the error terms are chosen so that z is a linear function of e. A
straightforward calculation yields




z1
z2
.
.
.
zn
zn+1


 =




1 0 · · · 0
b2,1 − ψ1 1 · · · 0

.

.

.
.
.
.

. . .
.
.
.

bn,1 − ψn−1 bn,2 − ψn−2 · · · 1
bn+1,1 + fn;1 − ψn bn+1,2 + fn;2 − ψn−1 · · · bn+1,n + fn;n − ψ1






e1
e2
.
.
.
en


 ,

(2.14)

where bi,j = bi,j(x̂) are functions of x̂ given by (2.7), (2.9) and for 4 ≤ i ≤ n + 1 and
2 ≤ j ≤ i− 3,

bi,1 = bi−2,1 − ψi−3 + ci−1(bi−1,1 − ψi−2) + (bi−1,1 − ψi−2)
′

−
i−2∑
j=1

(bi−1,j − ψi−j−1)ψj ,

bi,j = bi−2,j − ψi−j−2 + ci−1(bi−1,j − ψi−j−1) + (bi−1,j − ψi−j−1)
′(2.15)

+ bi−1,j−1,

bi,i−2 = 1 + ci−1(bi−1,i−2 − ψ1) + (bi−1,i−2 − ψ1)
′ + bi−1,i−3,

bi,i−1 = ci−1 + bi−1,i−2.

In the backstepping observer we choose the observer gains to zero the last row of the
matrix in (2.14),

ψ1 = bn+1,n + fn;n,(2.16)

...

ψn−1 = bn+1,2 + fn;2,

ψn = bn+1,1 + fn;1,

so that zn+1 = 0.
By induction one sees that bi,j depends only on the quantities

c1, . . . , ci−1,
ψ1, . . . , ψi−j−1,
br,s, 1 < r < i, 1 ≤ r − s < i− j,

(2.17)

and so bi,j can be computed down the diagonals of (2.14). We start with the diagonal
just below the main one and successively compute b2,1, b3,2, . . . , bn+1,n, which yields

bi,i−1 = c1 + · · ·+ ci−1.

Then we define ψ1 by (2.16). Going down the diagonal two below the main we compute
b3,1, b4,2, . . . , bn+1,n−1 and then ψ2, etc.
Theorem 2.1. Suppose that K is a compact, positively invariant set for the

system (2.1). Consider the observer (2.2) with backstepping gains (2.16) and error
dynamics (2.3). There exist constants M > 0, ε > 0, γ > 0 such that if x(0) ∈ K
and |e(0)| < ε, then

|e(t)| < M |e(0)| exp(−γt).
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Proof. Define

V =
1

2

n∑
i=1

z2
i ;(2.18)

then from (2.13)

V̇ = −
n∑
i=1

ciz
2
i + znzn+1 + O(e)3

and

V̇ = −
n∑
i=1

ciz
2
i + O(e)3.(2.19)

Now let Ur be the r > 0 neighborhood of K; then its closure Ūr is a compact
subset. Hence there exist constants N > 0, ε > 0 such that the error term in (2.19)
satisfies

|O(e)3| ≤ N |e|3(2.20)

for all x̂ ∈ Ūr, |e| < ε. Redefine ε to be the smaller of r and ε.
From (2.14) we know that there exist constants M1 > 0,M2 > 0 such that for all

x̂ ∈ Ūr and all e, z,

M1|e| ≤ |z| ≤ M2|e|.(2.21)

Since ci > 0 there exists a constant γ > 0 such that

4γ|z|2 ≤
n∑
i=1

ciz
2
i .(2.22)

Hence there is an ε > 0 sufficiently small so that the error term in (2.19) satisfies

|O(e)3| ≤ 1

2

n∑
i=1

ciz
2
i(2.23)

for all x̂ ∈ Ūr and all |e| < ε. For these x̂, e

V̇ ≤ −1

2

n∑
i=1

ciz
2
i(2.24)

≤ −2γV.(2.25)

Consider the set D = {(x, e) : x ∈ K,V (z(e)) < M1ε/2}; this is a neighborhood
of K×{0} in x, e space. From (2.21) we see that on D, we have |e| < ε, so V̇ < −2γV ,
so D is positively invariant, and by Gronwall’s inequality

V (t) ≤ exp(−2γt)V (0).(2.26)

From (2.21) we obtain

|e(t)| ≤ M2

M1
exp(−γt)|e(0)|

Remark 1. There are other possible choices of the Lyapunov function (2.18)—this
one was chosen to simplify the calculations. The constants ci appearing in (2.14) can
be chosen as functions of y, x̂ as long as they are positive and bounded away from
zero.
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3. Vector output systems in observable form. The above result generalizes
immediately to vector output systems with all observability indices the same. These
are systems of the form

yl = x1,l,

ẋ1,l = x2,l,

ẋ2,l = x3,l,(3.1)

...

ẋk,l = fk,l(x1, . . . , xk),

where l = 1, . . . , p. The output y = (y1, . . . , yp) is p dimensional and so is each xi =
(xi,1, . . . , xi,p). The state dimension is then n = pk dimensional. The construction of
the observer proceeds exactly as before except that the previously scalar quantities
x̂i, ei, zi, ψi are now p dimensional, z2

i is replaced by |zi|2, zizj is replaced by zi · zj ,
and ψi, bi,j , fn,j are p× p dimensional.

More generally we consider systems of the form

yl = x1,l,

ẋ1,l = x2,l,

ẋ2,l = x3,l,(3.2)

...

ẋkl,l = fkl,l(x1, . . . , xkl),

where y is p dimensional, x is n =
∑

kl dimensional, and without loss of generality
k1 ≥ k2 ≥ · · · ≥ kp. The indices k1, . . . , kp are the observability indices of the system
[17]. The dual indices are m1, . . . ,mk1 , where mi is the number of kl’s that are greater
than or equal to i. The subvectors xi are defined as xi = (xi,1, . . . , xi,mi).

The observer is of the form

˙̂x1,l = x̂2,l + ψ1,l(x̂1, . . . , x̂kl)(x1 − x̂1),

˙̂x2,l = x̂3,l + ψ2,l(x̂1, . . . , x̂kl)(x1 − x̂1),

...(3.3)
˙̂xkl,l = fkl,l(x̂1, . . . , x̂kl) + ψkl,l(x̂1, . . . , x̂kl)(x1 − x̂1),

where ψr,l(x̂1, . . . , x̂kl) is 1 × p dimensional.

The error dynamics is given by

ė1,l = e2,l − ψ1,l(x̂1, . . . , x̂kl)e1,

ė2,l = e3,l − ψ2,l(x̂1, . . . , x̂kl)e1,

...(3.4)

ėkl,l = fkl,l(x1, . . . , xkl)− fkl,l(x̂1, . . . , x̂kl)− ψkl,l(x̂1, . . . , x̂kl)e1.

The method is a modification of the previous approach but the notation is cum-
bersome. The subvector xj is mj dimensional and so are the subvectors x̂j and ej .
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The subvector zj is mj−1 dimensional and is defined by a modification of (2.13),

z1,l = e1,l, 1 ≤ l ≤ p,
z2,l = c1,lz1,l + ż1,l + O(e)2, 1 ≤ l ≤ m1,
z3,l = z1,l + c2,lz2,l + ż2,l + O(e)2, 1 ≤ l ≤ m2,

...
zr+1,l = zr−1,l + cr,lzr,l + żr,l + O(e)2, 1 ≤ l ≤ mr,

...
zk1+1,l = zk1−1,l + ck1,lzk1,l + żk1,l + O(e)2, 1 ≤ l ≤ mk1 .

(3.5)

The auxiliary variables are the extra components of z, namely zk1+1,1, . . . , zkp+1,p,
and the observer gains are determined by setting them to zero. If

V =
1

2

p∑
l=1

kl∑
r=1

z2
r,l,

then

V̇ = −
p∑
l=1

kl∑
r=1

cr,lz
2
r,l + O(e)3

and the argument proceeds as before.

We illustrate with an example. Consider a three dimensional system

y1 = x1,1,

y2 = x1,2,

ẋ1,1 = x2,1,(3.6)

ẋ1,2 = f1,2(x1,1, x1,2),

ẋ2,1 = f2,1(x1,1, x1,2, x2,1).

The indices are k1 = 2, k2 = 1 and the dual indices are m1 = 2,m2 = 1. The observer
is of the form

˙̂x1,1 = x̂2,1 + ψ1,1,1(x̂1,1, x̂1,2, x̂2,1)(x1,1 − x̂1,1) + ψ1,1,2(x̂1,1, x̂1,2, x̂2,1)(x1,2 − x̂1,2),

˙̂x1,2 = f1,2(x̂1,1, x̂1,2) + ψ1,2,1(x̂1,1, x̂1,2)(x1,1 − x̂1,1) + ψ1,2,2(x̂1,1, x̂1,2)(x1,2 − x̂1,2),

˙̂x2,1 = f2,1(x̂1,1, x̂1,2, x̂2,1) + ψ2,1,1(x̂1,1, x̂1,2, x̂2,1)(x1,1 − x̂1,1)

+ ψ2,1,2(x̂1,1, x̂1,2, x̂2,1)(x1,2 − x̂1,2),(3.7)

and the error dynamics is

ė1,1 = e2,1 − ψ1,1,1(x̂1,1, x̂1,2, x̂2,1)e1,1 − ψ1,1,2(x̂1,1, x̂1,2, x̂2,1)e1,2,

ė1,2 = f1,2(x1,1, x1,2)− f1,2(x̂1,1, x̂1,2)− ψ1,2,1(x̂1,1, x̂1,2)e1,1 − ψ1,2,2(x̂1,1, x̂1,2)e1,2,

ė2,1 = f2,1(x1,1, x1,2, x2,1)− f2,1(x̂1,1, x̂1,2, x̂2,1)

− ψ2,1,1(x̂1,1, x̂1,2, x̂2,1)e1,1 − ψ2,1,2(x̂1,1, x̂1,2, x̂2,1)e1,2.(3.8)
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From (3.5) we obtain

z1,1 = e1,1,

z1,2 = e1,2,

z2,1 = (c1,1 − ψ1,1,1)e1,1 − ψ1,1,2e1,2 + e2,1,

z2,2 =

(
∂f1,2

∂x̂1,1
− ψ1,2,1

)
e1,1 +

(
c1,2 +

∂f1,2

∂x̂1,2
− ψ1,2,2

)
e1,2,

z3,1 =

(
1 + c1,1c2,1 − (c1,1 + c2,1)ψ1,1,1 − ψ′

1,1,1 + ψ2
1,1,1(3.9)

− ψ1,1,2

(
∂f1,2

∂x̂1,1
− ψ1,2,1

)
+

∂f2,1

∂x̂1,1
− ψ2,1,1

)
e1,1

+

(
− (c1,1+c2,1)ψ1,1,2 − ψ′

1,1,2 + ψ1,1,1ψ1,1,2

− ψ1,1,2

(
∂f1,2

∂x̂1,2
− ψ1,2,2

)
+

∂f2,1

∂x̂1,2
− ψ2,1,2

)
e1,2

+

(
c1,1 + c2,1 +

∂f2,1

∂x̂2,1
− ψ1,1,1

)
e2,1.

Setting the auxiliary variables z2,2 = z3,1 = 0, we obtain a solution

ψ1,2,1 =
∂f1,2

∂x̂1,1
,

ψ1,2,2 = c1,2 +
∂f1,2

∂x̂1,2
,

ψ2,1,1 = 1 + c1,1c2,1 − (c1,1 + c2,1)ψ1,1,1 − ψ′
1,1,1 + ψ2

1,1,1

−ψ1,1,2

(
∂f1,2

∂x̂1,1
− ψ1,2,1

)
+

∂f2,1

∂x̂1,1
,(3.10)

ψ2,1,2 = −(c1,1+c2,1)ψ1,1,2 − ψ′
1,1,2 + ψ1,1,1ψ1,1,2 +

∂f2,1

∂x̂1,2
,

ψ1,1,1 = c1,1 + c2,1 +
∂f2,1

∂x̂2,1
,

ψ1,1,2 = 0.

There are other solutions with ψ1,1,2 �= 0.

A computationally simpler approach [22] is to add extra states so as to make all
the observability indices the same. We illustrate with the three dimensional system
(3.6) above. We imbed it in the four dimensional system

y1 = x1,1,

y2 = x1,2,

ẋ1,1 = x2,1,(3.11)

ẋ1,2 = x2,2 + f1,2(x1,1, x1,2),

ẋ2,1 = f2,1(x1,1, x1,2, x2,1),

ẋ2,2 = 0.



LOCALLY CONVERGENT NONLINEAR OBSERVERS 165

In the new coordinates

x̄1,1 = x1,1,

x̄1,2 = x1,2,

x̄2,1 = x2,1,

x̄2,2 = x2,2 + f1,2(x1,1, x1,2),(3.12)

the system is in observable form

y1 = x̄1,1,

y2 = x̄1,2,

˙̄x1,1 = x̄2,1,

˙̄x1,2 = x̄2,2,

˙̄x2,1 = f2,1(x̄1,1, x̄1,2, x̄2,1),

˙̄x2,2 =
∂f1,2

∂x̄1,1
(x̄1,1, x̄1,2)x̄2,1 +

∂f1,2

∂x̄1,2
(x̄1,1, x̄1,2)f1,2(x̄1,1, x̄1,2).(3.13)

This process can be repeated to make all the observability indices identical. An ob-
server can be constructed for the higher dimensional system and since it is convergent
it will yield convergent estimates for the original system.

4. Systems locally in observable form. In this section we construct an ob-
server for a nonlinear system with scalar output of the form

ξ̇ = f(ξ),

y = h(ξ),(4.1)

where ξ ∈ R
n, y ∈ R.

Following [6] and [8], we say a system is uniformly observable if the mapping

ξ 
→




h(ξ)
Lfh(ξ)

...
Ln−1
f h(ξ)


(4.2)

is a global diffeomorphism, where Ljfh(ξ) is the j-fold Lie derivative of h by f ,

Lfh(ξ) =
∂h

∂ξ
(ξ)f(ξ),

Ljfh(ξ) =
∂Lj−1

f h

∂ξ
(ξ)f(ξ).(4.3)

A system can be transformed globally into observable form iff it is uniformly observ-
able. The high gain observer of Gauthier, Hammouri, and Othman [8] requires that
the system be uniformly observable while our observer requires only that the system
be locally uniformly observable.

A system is locally uniformly observable at ξ0 if the mapping (4.2) is a local
diffeomorphism on a neighborhood of ξ0. A system is locally uniformly observable on
a set K if it is locally uniformly observable at every ξ0 ∈ K.
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If a system is locally uniformly observable at ξ0, then we can define new local
coordinates around ξ0:

x(ξ) =




h(ξ)
Lfh(ξ)

...
Ln−1
f h(ξ)


 .(4.4)

In these coordinates the system is in observable form (2.1) with

fn(x) = Lnfh(ξ(x)).(4.5)

Lemma 4.1. Suppose that the system (4.1) is locally uniformly observable on a
compact subset K of ξ space; then there exist an ε > 0 and constants M1 > 0,M2 > 0
such that for all ξ, ζ ∈ K, |ξ − ζ| < ε

M1|ξ − ζ| ≤ |x(ξ)− x(ζ)| ≤ M2|ξ − ζ|.(4.6)

Proof. The map (4.2) is a local diffeomorphism so at any ζ ∈ K there exist
δ(ζ) > 0,M1(ζ) > 0,M2(ζ) > 0 such that

M1(ζ)|ξ1 − ξ2| ≤ |x(ξ1)− x(ξ2)| ≤ M2(ζ)|ξ1 − ξ2|(4.7)

for all |ξi − ζ| < δ(ζ). Let B(ζ) denote the open ball around ζ of radius δ(ζ)/2.
These balls form an open cover of the compact set K so there exists a finite subcover
B(ζ1), . . . , B(ζk). Define

ε =
1

2
min{δ(ζ1), . . . , δ(ζk)},

M1 = min{M1(ζ1), . . . ,M1(ζk)},
M2 = max{M2(ζ1), . . . ,M2(ζk)}.

If |ξ1 − ξ2| < ε, then there exists a j such that |ξi − ζj | < δ(ζj) for i = 1, 2, so the
conclusion follows from (4.7).

The observer for (4.1) will be of the form

˙̂
ξ = f(ξ̂) + φ(ξ̂) (y − ŷ) ,

ŷ = h(ξ̂).(4.8)

Theorem 4.2. Suppose the system (4.1) is locally uniformly observable on a
compact positively invariant set K. There exists an observer (4.8) and constants M >

0, ε > 0, γ > 0 such that if ξ(0) ∈ K and |ξ(0)− ξ̂(0)| < ε, then

|ξ(t)− ξ̂(t)| < M |ξ(0)− ξ̂(0)| exp(−γt).

Proof. Notice that the mapping (4.4) is globally defined on the compact positively
invariant set K. It may fail to define global coordinates on K but it is locally one to
one and so defines valid local coordinates. In these local coordinates the system is in
observable form (2.1) and so we can proceed as in section 2. In the local x coordinates
the observer (4.8) takes the form (2.2) and the local error dynamics is given by (2.3).
It is important to note that the x variables are globally defined as are x̂, e, although
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they may be valid coordinates only locally. This allows us to construct the observer
in the x variables exactly as before and its local convergence is guaranteed by the
above lemma. The observer in the ξ coordinates is given by (4.8), where

φ(ξ̂) =

[
∂x

∂ξ
(ξ̂)

]−1

ψ(x(ξ̂)).(4.9)

Note that this does not require inverting x = x(ξ̂), but it does require inverting the

Jacobian matrix ∂x
∂ξ (ξ̂) at each ξ̂.

5. Systems with inputs. In this section we consider systems with inputs

ξ̇ = f(ξ, u),

y = h(ξ).(5.1)

The state trajectory of a system in observable form (2.1) is completely determined
by the output trajectory. The generalization of observable form to a system with
inputs is one of the form

y = x1,

ẋ1 = x2 + g1(x1, u),

ẋ2 = x3 + g2(x1, x2, u),

...

ẋn−1 = xn + gn−1(x1, . . . , xn−1, u),

ẋn = fn(x) + gn(x, u).(5.2)

Such a system is said to be uniformly observable for any input [9]. Regardless of
what input u = u(t) is chosen, the system is observable in the sense that the output
and input trajectories uniquely determine the state trajectory,

x1 = y,

x2 = ẋ1 − g1(x1, u),

x3 = ẋ2 − g2(x1, x2, u),

...

xn = ẋn−1 − gn−1(x1, . . . , xn−1, u).

We assume that the state estimate from the observer will be used in a feedback
law u = κ(x̂) to control the system. For a system that is uniformly observable for any
input (5.2), the observer will be in the following form:

˙̂x1 = x̂2 + g1(x̂1, κ(x̂)) + ψ1(x̂)(x1 − x̂1),
˙̂x2 = x̂3 + g2(x̂1, x̂2, κ(x̂)) + ψ2(x̂)(x1 − x̂1),

...(5.3)
˙̂xn−1 = x̂n + gn−1(x̂1, . . . , x̂n−1, κ(x̂)) + ψn−1(x̂)(x1 − x̂1),

˙̂xn = fn(x̂) + gn(x̂, κ(x̂)) + ψn(x̂)(x1 − x̂1).
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The error e = x− x̂ dynamics is given by

ė1 = e2 + g1(x1, κ(x̂))− g1(x̂1, κ(x̂))− ψ1(x̂)e1,

ė2 = e3 + g2(x1, x2, κ(x̂))− g2(x̂1, x̂2, κ(x̂))− ψ2(x̂)e1,

...(5.4)

ėn−1 = en + gn−1(x1, . . . , xn−1, κ(x̂))− gn−1(x̂1, . . . , x̂n−1, κ(x̂))− ψn−1(x̂)e1,

ėn = fn(x)− fn(x̂) + gn(x, κ(x̂))− gn(x̂, κ(x̂))− ψn(x̂)e1.

The observer is constructed as before; define variables z1, . . . , zn+1 by (2.13),
where the error terms are chosen so that z is a linear function of e, (2.14). The
coefficients bi,j(x̂) are given by the generalization of (2.7), (2.9), and (2.15),

b2,1 = c1 + g1,1,

b3,1 = 1 + c2(b2,1 − ψ1) + (b2,1 − ψ1)
′ + (b2,1 − ψ1)(g1,1 − ψ1) + g2,1,(5.5)

b3,2 = c2 + b2,1 + g2,2,

and for 4 ≤ i ≤ n + 1 and 2 ≤ j ≤ i− 3

bi,1 = bi−2,1 − ψi−3 + ci−1(bi−1,1 − ψi−2) + (bi−1,1 − ψi−2)
′

−
i−2∑
j=1

(bi−1,j − ψi−j−1)(ψj − gj;1) + gi−1;1,

bi,j = bi−2,j − ψi−j−2 + ci−1(bi−1,j − ψi−j−1) + (bi−1,j − ψi−j−1)
′

+ bi−1,j−1 +

i−2∑
k=j

(bi−1,k − ψi−k−1)gk;j + gi−1;j ,

bi,i−2 = 1 + ci−1(bi−1,i−2 − ψ1) + (bi−1,i−2 − ψ1)
′ + bi−1,i−3

+ (bi−1,i−2 − ψ1)gi−2;i−2 + gi−1;i−2,

bi,i−1 = ci−1 + bi−1,i−2 + gi−1;i−1,(5.6)

where

gi;j(x̂) =
∂gi
∂xj

(x̂, κ(x̂))(5.7)

and the operation ′ is defined on functions φ(x̂) by

φ′(x̂) =

n−1∑
j=1

∂φ

∂x̂j
(x̂) (x̂j+1 + gj(x̂, κ(x̂))) +

∂φ

∂x̂n
(fn(x̂) + gn(x̂, κ(x̂))) .(5.8)

Notice that as before that ′ does not involve the gains ψi and

φ′ = φ̇ + O(e).

Define

V =
1

2

n∑
i=1

z2
i ;(5.9)
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then from (2.13)

V̇ = −
n∑
i=1

ciz
2
i + znzn+1 + O(e)3.(5.10)

We choose the observer gains

ψ1 = bn+1,n + fn;n,

...

ψn−1 = bn+1,2 + fn;2,

ψn = bn+1,1 + fn;1(5.11)

so that zn+1 = 0 and

V̇ = −
n∑
i=1

ciz
2
i + O(e)3.(5.12)

A system (5.1) is said to locally uniformly observable for any input if around every
ξ0 the transformation (4.2) locally carries it to the form (5.2). For such systems the
above algorithm will yield an observer on any compact positively invariant set.

If the system is not locally uniformly observable for any input, then one can
still attempt to design the observer by the above algorithm by defining variables
z1, . . . , zn+1 by (2.13), where the error terms are chosen so that z is a linear function
of e, (2.14). The triangular structure of (2.14) will be lost so there is no guarantee
that the transformation from e to z is invertible. If it is, then the algorithm yields a
locally convergent observer.

Suppose U(x) is a Lyapunov function for the system (5.1) under full state feedback
u = κ(x),

U̇(x) =
∂U

∂x
(x)f(x, κ(x)) ≤ 0,

and suppose that the Lipschitz conditions
∣∣∣∣∂U∂x (x) (f(x, u)− f(x, κ(x)))

∣∣∣∣ ≤ M |u− κ(x)| ,
|κ(x)− κ(x̂)| ≤ M |x− x̂|

hold for some constant M . If we are able to design an observer using the backstepping
technique, then we can choose c1 = · · · = cn = N so that U(x) + V

1
2 (e, x̂) is a

Lyapunov function for the combined system. For |e| sufficiently small by (2.21) and
(2.23),

d

dt

(
U + V

1
2

)
=

∂U

∂x
(x)f(x, κ(x̂)) +

1

2
V − 1

2 V̇

=
∂U

∂x
(x)f(x, κ(x)) + (M2 − 2−

1
2 NM1)|e| ≤ 0

if N is sufficiently large, where M1 satisfies (2.21). Hence for small initial estimation
errors, the output feedback certainty equivalence control inherits the stability of the
state feedback control.
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6. The high gain observer. In this section, we compare the high gain observer
of [8] with high gain, the same observer using low gain, and the backstepping observer.
Consider a smooth, scalar output nonlinear system in observable form:

y = x1,

ẋ1 = x2,

ẋ2 = x3,

...(6.1)

ẋn−1 = xn,

ẋn = fn(x).

The observer proposed in [8] is of the form

˙̂x1 = x̂2 + L1(y − x̂1),
˙̂x2 = x̂3 + L2(y − x̂1),

...(6.2)
˙̂xn−1 = x̂n + Ln−1(y − x̂1),

˙̂xn = fn(x̂) + Ln(y − x̂1)

with

Li =

(
n
i

)
θi,

where θ is a parameter that must be chosen “sufficiently large” to insure global
convergence—just how large is never explicitly stated. A mathematical proof of the
convergence of the high gain observer with sufficiently high gain has been given in [8]
for systems without noise. But because of the high gain even relatively small noise
can degrade the performance of the high gain observer.

Suppose the variables and functions are of order one and hence one might choose
θ to be an order of magnitude bigger, say θ = 10, so as to be “sufficiently large.” If the
system is three dimensional, then the largest gain is 1000! If the other variables are of
order one, then the right side of the observer dynamics (6.2) is completely dominated
by its gain times innovation term. The innovation is y− x̂1. If there is any observation
noise, then this is magnified by the gains in the error dynamics. For example, suppose
there is observation noise of order ε = 0.01 so the signal to noise ratio is 100—not a
bad situation. However, the noise in the gain times innovation term of the last state
is of order 10 while the state is of order 1. When x̂1 ≈ x1, the signal to noise ratio in
the observer dynamics is 0.1—hardly conducive to accurate estimation. Even if there
is no observation noise, driving noises can have similar but less dramatic effects.

Many successful applications of the high gain observer have been reported in the
literature [8], [6], [7], [9]. In most of these applications, a high gain is not actually
used. The method of Gauthier, Hammouri, and Othman [8] is used to design an
observer but the gain parameter, θ, is chosen to be relatively small. No attempt is
made to determine how large θ must be to guarantee global convergence. It appears
that the high gain observer with low gain is actually an excellent local observer and
this is why it has been successful in applications. It would nice to have a theoretical
explanation for why this is so.
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Table 6.1
Mean square errors of different observers.

State High gain Low gain Backstepping
error θ = 8 θ = 2 ci = 1

e1 1.32e-05 3.31e-06 6.27e-07
e2 6.49e-04 1.22e-05 8.93e-06
e3 4.18e-03 3.16e-05 1.15e-04

We give a simple example exhibiting this problem. Consider a three dimensional
system

y = Cx + v,(6.3)

ẋ = Ax + g(x),(6.4)

where

A =


 0 1 0

0 0 1
−6 −11 −6


 ,

C =
[

1 0 0
]
,

g(x) =


 0

0
7 sin(x2

1 + x2
2 + x2

3)


 .

There is one equilibrium at x = 0 which is asymptotically stable as the eigenvalues
of A are {−1,−2,−3}. The nonlinear term g is bounded. The observation noise v is
assumed to be small, band limited, Gaussian noise.

The observer with noise is

˙̂x = Ax̂ + g(x̂) + L(x1 − x̂1 + v),

where the observer gain is

L =


 L1

L2

L3


 =


 3θ

3θ2

θ3


 .

To estimate how large the gain parameter θ should be, we started the system at
x(0) = (0, 0, 0) and the observer at x̂(0) = (0, 0, 1). The noiseless observer did not
converge to the true value when θ = 7 but did converge when θ = 8, so we chose the
latter value. We simulated three observers with small observation noise starting from
the true state x̂(0) = x(0) = (0, 0, 0). We used white Gaussian noise of covariance
1e−04, sampled and held for 0.1 second. The first was the observer [8] with a high gain
θ = 8, the second was the observer [8] with a relatively low gain θ = 2 and the third
was the backstepping observer that is presented above with all the design parameters
ci = 1. As can be seen from Table 6.1, the high gain observer performs poorly as
compared with the low gain and backstepping observers, which are comparable in
performance. Table 6.2 contains the errors of high and low gain observers relative to
the backstepping observer.

It should be noted that in the absence of noise there is no assurance that θ = 8
is high enough so that the high gain observer converges globally or even locally. On
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Table 6.2
Relative errors of different observers.

State High gain Low gain Backstepping
error θ = 8 θ = 2 ci = 1

e1 21.0 5.3 1
e2 72.7 1.4 1
e3 36.2 0.3 1
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Fig. 1. The trajectories of Duffing’s equation.

the other hand we have proven that the backstepping observer converges locally for
any ci > 0.

One might ask how the example of [8] avoids this high gain difficulty in its the
noisy simulations. The answer is very simple: by taking small noise and θ = 1, n = 2,
it is not really high gain.

7. Examples. The design algorithm described in section 2 has been imple-
mented in MAPLE. This is applied to some examples.

7.1. Duffing’s equation. Duffing’s equation [11], [14] is

y = ξ1 +
1

2
ξ2,

ξ̇1 = ξ2,(7.1)

ξ̇2 = ξ1 − ξ3
1 .

It is a conservative system with the energy function

E(ξ) =
1

2
ξ2
2 − 1

2
ξ2
1 +

1

4
ξ4
1 .

It has three equilibrium points, ξ0 = (0, 0), ξI = (1, 0), and ξII = (−1, 0). There
are three typical trajectories (see Figure 1): one is around ξI (type I), one is around
ξII (type II), and the third one encloses all three equilibria (type III). We define
the compact positively invariant region K to be the area enclosed by a trajectory of
type III. The system is locally uniformly observable on R

2. The observation function,
h(ξ) = ξ1 + 1

2ξ2, was chosen so that the system is not in observable form. The system
can be transformed globally into observable form but cannot be transformed into the
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Fig. 2. Estimation of trajectory of type I for Duffing’s equation.
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Fig. 3. Estimation of trajectory of type II for Duffing’s equation.

observer form by output injection and change of coordinates [17]. When c1 = c2 = 1,
the observer gain is

φ1(ξ̂) = −−2− 14 ξ̂2
1 − 14 ξ̂4

1 − 8 ξ̂1ξ̂2 − 8 ξ̂3
1 ξ̂2 − 4 ξ̂2

2 + 12 ξ̂2
2 ξ̂

2
1 − 2 ξ̂6

1

3
(
1 + ξ̂2

1

)3 ,

φ2(ξ̂) =
8 + 8 ξ̂2

1 + 8 ξ̂4
1 − 4 ξ̂1ξ̂2 + 8 ξ̂3

1 ξ̂2 + 8 ξ̂6
1 + 12 ξ̂5

1 ξ̂2 − 8 ξ̂2
2 + 24 ξ̂2

2 ξ̂
2
1

3
(
1 + ξ̂2

1

)3 .

Three simulations of the system and the backstepping observer are shown in
Figures 2, 3, and 4 for trajectory types I, II, and III. Notice that all the simulations
use the same observer with the same gain and the same initial estimate but different
initial states. The state trajectories are of different types around different equilibrium
points.

The solid and dotted curves in Figures 2a, 3a, and 4a are the graphs of the
trajectories of the system and the observer. The curves in Figures 2b, 3b, and 4b
show the errors e1 = ξ1 − ξ̂1 and e2 = ξ2 − ξ̂2.

7.2. Homoclinic bifurcation. The backstepping approach can be used to de-
sign observers for systems with parameters. Such systems can undergo bifurcations.
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Fig. 4. Estimation of trajectory of type III for Duffing’s equation.
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Fig. 5. The homoclinic bifurcation.

Consider the following system from [11]:

y = ξ1,

ξ̇1 = 2ξ2,(7.2)

ξ̇2 = 2ξ1 − 3ξ2
1 − ξ2(ξ

3
1 − ξ2

1 + ξ2
2 − µ).

The system depends on a parameter c. For all values of the parameter, there is a
saddle at (0, 0) with one stable and one unstable direction and an unstable source
at (2/3, 0). For −4/27 < µ < 0, there is an asymptotically stable periodic orbit
around the unstable source. At µ = 0, the periodic orbit becomes a homoclinic orbit
consisting of branches of the stable and unstable manifolds of the saddle. For µ > 0,
there are no periodic orbits nearby (see Figure 5). For µ < 0 we can find a compact
positively invariant set K containing the attracting limit cycle, and for µ = 0 we can
take as K the compact set consisting of the homoclinic orbit and it interior. Because
of the parameter µ, (7.2) represents a family of systems. However, the computational
algorithm for the observer gain is implemented symbolically and µ can be treated as
a parameter in the observer. Notice the construction of the observer does not depend
on K.
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Fig. 6. Estimation around the periodic solution with µ = −0.1.
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Fig. 7. Initial state and estimate inside the homoclinic loop with µ = 0.

If we set c1 = c2 = 1, the observer gains are

φ1(ξ̂) = 2− ξ̂3
1 + ξ̂2

1 − 3 ξ̂2
2 + µ,

φ2(ξ̂) = 6 ξ̂2ξ̂1 − 6 ξ̂1 + ξ̂2
1 − ξ̂3

1 − 3 ξ̂2
2 + µ

+
3 ξ̂4

2

2
+

ξ̂6
1

2
− ξ̂5

1 +
ξ̂4
1

2
− ξ̂3

1µ + ξ̂2
1µ +

µ2

2
− 9 ξ̂2ξ̂

2
1 + 3.

The performance of the observer for µ = −0.1 and µ = 0 are shown in Figures
6, 7, and 8. In Figures 6a, 7a, and 8a the trajectories of (7.2) (solid curves) and
the trajectories of the observer (dotted curves) are shown. The estimation error is
plotted in Figures 6b, 7b, and 8b. Notice that, in Figure 8, the state starts inside the
homoclinic orbit, the estimate starts outside where the system is unstable, and the
observer still converges.

8. Conclusion. We have presented a method for designing observers for non-
linear systems based on the backstepping. The method is broadly applicable and the
observer error exponentially converges to zero provided the initial error is not too
large. It is applicable to a slightly broader class of systems than the high gain ob-
server of Gauthier, Hammouri, and Othman [8] but differs in that the gain is not high
and the convergence is only local. The method is easily implemented in a symbolic
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Fig. 8. Initial state inside the homoclinic loop and initial estimate outside the homoclinic loop
with µ = 0.

computational package such as MAPLE.
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