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Transverse Exponential Stability and Applications
Vincent Andrieu, Bayu Jayawardhana, Senior Member, IEEE, and Laurent Praly

Abstract—We investigate how the following properties are re-
lated to each other: i) A manifold is “transversally” exponentially
stable; ii) the “transverse” linearization along any solution in the
manifold is exponentially stable; and iii) there exists a field of posi-
tive definite quadratic forms whose restrictions to the directions
transversal to the manifold are decreasing along the flow. We
illustrate their relevance with the study of exponential incremental
stability. Finally, we apply these results to two control design
problems, nonlinear observer design and synchronization. In par-
ticular, we provide necessary and sufficient conditions for the
design of nonlinear observer and of nonlinear synchronizer with
exponential convergence property.

Index Terms—Contraction, linearization, Lyapunov methods,
nonlinear control systems, synchronization.

I. INTRODUCTION

THE property of attractiveness of a (non-trivial) invariant
manifold is often sought in many control design problems.

In the classical internal model-based output regulation [16], it
is known that the closed-loop system must have an attractive
invariant manifold, on which, the tracking error is equal to zero.
In the Immersion & Invariance [6], in the sliding-mode control
approaches, or observer designs [3], obtaining an attractive
manifold is an integral part of the design procedure. Many
multi-agent system problems such as formation control, con-
sensus, and synchronization problems, are also closely related
to the analysis and design of an attractive invariant manifold,
see, for example, [8], [29], [34].

The study of stability and/or attractiveness of invariant man-
ifolds and more generally of sets has a long history. See, for in-
stance, [35, Section 16] and the references therein. In this paper,
we focus on the exponential convergence property by studying
the system linearized transversally to the manifold. We show
that this attractiveness property is equivalent to the existence of
positive definite quadratic forms which are decreasing along the
flow of the transversally linear system. For constant quadratic
forms and when the system has some specific structure, the
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latter becomes the Demidovich criterion which is a sufficient,
but not yet necessary, condition for convergent systems [22],
[23] and [25]. On the other hand, if we consider the standard
output regulation theory as pursued in [16], the attractiveness of
the invariant manifold is established using the center manifold
theorem which corresponds to the stability property of the
linearized system at an equilibrium point. Due to the lack
of characterization of an attractive invariant manifold, most
of the literature on constructive design for nonlinear output
regulator is based on various different sufficient conditions that
can be very conservative. In this regard, our main results can
potentially provide a new framework for control designs aiming
at making an invariant manifold attractive.

The paper is divided into two parts. In Section II-A, we
study a dynamical system that admits a transverse exponentially
stable invariant manifold. In particular, we establish equivalent
relations between:

(i) the transverse exponential stability of an invariant
manifold;

(ii) the exponential stability of the transverse linearized
system; and

(iii) the existence of field of positive definite quadratic forms
the restrictions to the transverse direction to the manifold
of which are decreasing along the flow.

We illustrate these results by considering a particular case of
exponential incremental stable systems in Section II-B. Here,
incremental stability refers to the property where the distance
between any two trajectories converges to zero (see, for exam-
ple, [4], [5] and [12]). For such systems, the property (i) ⇔ (iii)
is used to prove that the exponential incremental stability
property is equivalent to the existence of a Riemannian distance
which is contracted by the flow.

In the second part of the paper, we apply the equivalence
results to two different control problems: nonlinear observer de-
sign and synchronization of nonlinear multi-agent systems. In
both problems, a necessary condition is obtained. Based on this
necessary condition, we propose a novel design for an observer,
in Section III-A, and for a synchronizer, in Section III-B.

In Section III-A, we reinterpret the three properties (i), (ii),
and (iii) in the context of observer design. This allows us to
revisit some of the results obtained recently in [1] and [27]
and, more importantly, to show that the sufficient condition
given in [27] is actually also a necessary condition to design
an exponential (local) full-order observer.

Finally, in Section III-B, we solve a nonlinear synchro-
nization problem. In particular, we give some necessary and
sufficient conditions to achieve (local) exponential synchro-
nization of nonlinear multi-agent systems involving more than
two agents. This result generalizes our preliminary work in [2].
Moreover, under an extra assumption, we show how to obtain a
global synchronization for the two agents case.

0018-9286 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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It is worth noting that our main results are applicable to other
control problems beyond the two control problems mentioned
before. In a recent paper by Wang, Ortega & Su [33], our results
have been applied to solve an adaptive control problem via the
Immersion & Invariance principle.

II. MAIN RESULT

A. Transversally Exponentially Stable Manifold

Throughout this section, we consider a system in the form

ė = F (e, x), ẋ = G(e, x) (1)

where e is in R
ne , x is in R

nx and the functions F : Rne ×
R

nx → R
ne and G : Rne × R

nx → R
nx are C2. We denote

by (E(e0, x0, t), X(e0, x0, t)) the (unique) solution which goes
through (e0, x0) in R

ne × R
nx at t = 0. We assume it is defined

for all positive times, i.e., the system is forward complete.
The system (1) above can be used, for example, to study the

behavior of two distinct solutions X(x1, t) and X(x2, t) of the
system defined on R

n by

ẋ = f(x) (2)

Indeed, we obtain an (e, x)-system of the type (1) with

F (e, x) = f(x+ e)− f(x), G(e, x) = f(x). (3)

This is the context of incremental stability that we will use
throughout this section to illustrate our main results.

In the following, to simplify our notations, we denote by
Be(a) the open ball of radius a centered at the origin in R

ne .
We study the links between the following three notions.

TULES-NL (Transversal uniform local exponential stability)
The system (1) is forward complete and there exist strictly
positive real numbers r, k, and λ such that we have, for all
(e0, x0, t) in Be(r)× R

nx × R≥0,

|E(e0, x0, t)| ≤ k|e0| exp(−λt). (4)

UES-TL (Uniform exponential stability for the transversally
linear system)
The system

˙̃x = G̃(x̃) := G(0, x̃) (5)

is forward complete and there exist strictly positive real
numbers k̃ and λ̃ such that any solution (Ẽ(ẽ0, x̃0, t),

X̃(x̃0, t)) of the transversally linear system

˙̃e =
∂F

∂e
(0, x̃)ẽ, ˙̃x = G̃(x̃) (6)

satisfies, for all (ẽ0, x̃0, t) in R
ne × R

nx × R≥0,∣∣∣Ẽ(ẽ0, x̃, t)
∣∣∣ ≤ k̃ exp(−λ̃t)|ẽ0|. (7)

ULMTE (Uniform Lyapunov Matrix Transversal Equation)
For all positive definite matrix Q, there exists a continu-
ous function P : Rnx → R

ne×ne and strictly positive real

numbers p and p such that P has a derivative dG̃P along

G̃ in the following sense

dG̃P (x̃) := lim
h→0

P
(
X̃(x̃, h)

)
− P (x̃)

h
(8)

and we have, for all x̃ in R
nx ,

dG̃P (x̃) + P (x̃)
∂F

∂e
(0, x̃) +

∂F

∂e
(0, x̃)′P (x̃) ≤ −Q (9)

pI ≤ P (x̃) ≤ pI. (10)

In other words, the system (1) is said to be TULES-NL if the
manifold E := {(e, x) : e = 0} is exponentially stable for the
system (1), locally in e and uniformly in x; and it is said to be
UES-TL if the manifold Ẽ := {(x̃, ẽ) : ẽ = 0} of the linearized
system transversal to E in (6) is exponentially stable uniformly
in x̃.

Concerning the ULMTE property, condition (9) is re-
lated to the notion of horizontal contraction introduced in
[11, Section VII]). However, a key difference is that we do not
require the monotonicity condition (9) to hold in the whole man-
ifold R

ne × R
nx but only along the invariant submanifold E .

In this case the corresponding horizontal Finsler-Lyapunov
function V : (Rnx × R

ne)× (Rnx × R
ne) that we get takes

the form V ((x, e), (δx, δe)) = δ′eP (x)δe.
In the case where the manifold is reduced to a single point,

i.e., when the system (1) is simply ė = F (e) with an equilib-
rium point at the origin (i.e., F (0) = 0) then

• the TULES-NL property can be understood as the local
exponential stability of the origin;

• the UES-TL notion translates to the exponential stability
of the linear system ˙̃e = (∂F/∂e)(0)ẽ; and

• the ULMTE concept is about the existence of a posi-
tive definite matrix P solution to the Lyapunov equation
P (∂F/∂e)(0) + (∂F/∂e)(0)�P = −Q where Q is an
arbitrary positive definite matrix.

In this particular case, it is well known that these three proper-
ties are equivalent.

For the example of incremental stability, as mentioned be-
fore, the three properties of TULES-NL, UES-TL, and ULMTE
can be understood globally as follows:

P1 (TULES-NL) System (2) is globally exponentially incre-
mentally stable. Namely, there exist two strictly positive
real numbers k and λ such that for all (x1, x2) in R

n × R
n

we have, for all t in R≥0,

|X(x1, t)−X(x2, t)| ≤ k|x1 − x2| exp(−λt). (11)

P2 (UES-TL) The manifold E = {(x, e), e = 0} is globally
exponentially stable for the system

ė =
∂f

∂x
(x)e, ẋ = f(x). (12)

Namely, there exist two strictly positive real numbers ke
and λe such that for all (e, x) in R

n × R
n, the correspond-

ing solution of (12) satisfies

|E(e, x, t)| ≤ ke|e| exp(−λet), ∀ t ∈ R≥0.
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P3 (ULMTE) There exists a positive definite matrix Q in
R

n×n, a C2 function P : Rn → R
n×n and strictly positive

real numbers p and p such that P has a derivative dfP
along f in the sense of (22), and satisfies (21) and (19).

In this context, it is known that P3 ⇒ P1. Actually, asymp-
totic incremental stability for which Property P1 is a particular
case is known to be equivalent to the existence of an appropriate
Lyapunov function. This has been established in [4], [32],
[36] or [25], for instance. In our context, this Lyapunov function
is given as a Riemannian distance. We shall show below that,
as for the case of an equilibrium point, we have also P1 ⇒
P2 ⇒ P3, (see Proposition 4), namely, incremental exponential
stability implies the existence of a Riemannian distance for
which the flow is contracting.

In studying the equivalence relation between TULES-NL,
UES-TL, and ULMTE, we are not interested in the possibil-
ity of a solution near the invariant manifold to inherit some
properties of solutions in this manifold, such as the asymptotic
phase, the shadowing property, the reduction principle, etc.,
nor in the existence of some special coordinates allowing us
to exhibit some invariant splitting in the dynamics (exponential
dichotomy). This is the reason that, besides forward complete-
ness, we assume nothing for the in-manifold dynamics given in
(5). So, for not misleading our reader, we prefer to use the word
“transversal” instead of “normal” as seen for instance in the
various definitions of normally hyperbolic submanifolds given
in [14, Section 1].

In order to simplify the exposition of our results and to con-
centrate our attention on the main ideas, we assume everything
is global and/or uniform, including restrictive bounds. Most
of this can be relaxed with working on open or compact sets,
but then with restricting the results to time intervals where a
solution remains in such a particular set.

1) TULES-NL“⇒”UES-TL: In the spirit of Lyapunov first
method, we have the following result.

Proposition 1: If Property TULES-NL holds and there exist
positive real numbers ρ, μ, and c such that, for all x in R

nx ,∣∣∣∣∂F∂e (0, x)
∣∣∣∣ ≤ μ,

∣∣∣∣∂G∂x (0, x)

∣∣∣∣ ≤ ρ (13)

and, for all (e, x) in Be(kr) × R
nx ,∣∣∣∣ ∂2F

∂e∂e
(e, x)

∣∣∣∣ ≤ c,

∣∣∣∣ ∂2F

∂x∂e
(e, x)

∣∣∣∣ ≤ c,

∣∣∣∣∂G∂e (e, x)
∣∣∣∣ ≤ c (14)

then Property UES-TL holds.
The proof of this proposition is given in Appendix A.

Roughly speaking, it is based on the comparison between a
given e-component of a solution Ẽ(ẽ0, x̃0, t) of (6) with pieces
of e-component of solutionsE(ẽi, x̃i, t− ti) of solutions of (1),
where ẽi, x̃i are sequences of points defined on Ẽ(ẽ0, x̃0, t).
Thanks to the bounds (13) and (14), it is possible to show
that Ẽ and E remain sufficiently closed so that Ẽ inherit the
convergence property of the solution E. As a consequence, in
the particular case in which F does not depend on x, the two
functions E and Ẽ do not depend on x either and the bounds on
the derivatives of the G function are useless.

2) UES-TL“⇒”ULMTE: Analogous to the property of
existence of a solution to the Lyapunov matrix equation, we
have the following proposition on the link between UES-TL
and ULMTE notions.

Proposition 2: If Property UES-TL holds and there exists a
positive real number μ such that∣∣∣∣∂F∂e (0, x)

∣∣∣∣ ≤ μ ∀x ∈ R
nx (15)

then Property ULMTE holds.
The proof of this proposition is given in Appendix B. The

idea is to show that, for every symmetric positive definite matrix
Q, the function P : Rnx → R

ne×ne given by

P (x̃) = lim
T→+∞

T∫
0

(
∂Ẽ

∂ẽ
(0, x̃, s)

)′

Q
∂Ẽ

∂ẽ
(0, x̃, s)ds (16)

is well defined, continuous, and satisfies all the requirements
of the property ULMTE. The assumption (15) is used to
show that P satisfies the left inequality in (10). Nevertheless,
this inequality holds without (15) provided the function s �→
|(∂Ẽ/∂ẽ)(0, x̃, s)| does not go too fast to zero.

3) ULMTE“⇒”TULES-NL:
Proposition 3: If Property ULMTE holds and there exist

positive real numbers η and c such that, for all (e, x) in
Be(η)× R

nx ,∣∣∣∣∂P∂x (x)

∣∣∣∣ ≤ c (17)∣∣∣∣ ∂2F

∂e∂e
(e,x)

∣∣∣∣ ≤ c,

∣∣∣∣ ∂2F

∂x∂e
(e,x)

∣∣∣∣≤c,

∣∣∣∣∂G∂e (e,x)
∣∣∣∣≤c (18)

then Property TULES-NL holds.
The proof of this proposition can be found in Appendix C.

This is a direct consequence of the use of V (e, x) = e′P (x)e as
a Lyapunov function. The bounds (17) and (18) are used to show
that, with (9), the time derivative of this Lyapunov function is
negative in a (uniform) tubular neighborhood of the manifold
{(e, x), e = 0}.

B. Revisiting the Exponential Incremental Stable Systems

Incremental stability of an autonomous system (2) is the
property that a distance between any two solutions of (2)
converges asymptotically to zero. The characterization of it has
been studied thoroughly, for example, in [4], [5] and [12]. In
[4], [5], a Lyapunov characterization of incremental stability
(δ-GAS for autonomous systems and δ-ISS for non-
autonomous ones) is given based on the Euclidean distance be-
tween two states that evolve in an identical system. A variant of
this notion is that of convergent systems discussed in [22], [25].
All these studies are based on the notion of contracting flows
which has been widely studied in the literature and for a long
time, see, for example, [9], [11], [13], [18]–[21]. These flows
generate trajectories between which an appropriately defined
distance is monotonically decreasing with increasing time.
See [17] for a historical discussion on the contraction analysis
and [30] for a partial survey.
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The big issue in this view point is to find the appropriate
distance which may be a difficult task. The results in Section II
may help in this regard with providing an explicit construction
of a Riemannian distance.

Precisely, let P be a C2 function defined on R
n the values of

which are symmetric matrices satisfying

pI ≤ P (x) ≤ pI ∀x ∈ R
n. (19)

The length of any piece-wise C1 path γ : [s1, s2] → R
n be-

tween two arbitrary points x1 = γ(s1) and x2 = γ(s2) in R
n

is defined as:

L(γ)

∣∣∣∣s2
s1

=

s2∫
s1

√
dγ

ds
(σ)′P (γ(σ))

dγ

ds
(σ)dσ. (20)

By minimizing along all such paths, we get the distance
d(x1, x2).

Then, thanks to the well-established relation between (geo-
desically) monotone vector field (semi-group generator) (op-
erator) and contracting (non-expansive) flow (semi-group) (see
[7], [13], [15], [18]and many others), we know that this distance
between any two solutions of (2) is exponentially decreasing to
0 as time moves forward if we have

dfP (x)+P (x)
∂f

∂x
(x)+

∂f

∂x
(x)′P (x)≤−Q ∀x∈R

n (21)

where Q is a positive definite symmetric matrix and

dfP (x) = lim
h→0

P (X(x, h))− P (x)

h
. (22)

For a proof, see, for example [18, Theorem 1] or [15,
Theorems 5.7 and 5.33] or [24, Lemma 3.3] [replacing f(x)
by x+ hf(x)].

In this context, using the main results of our previous section,
we can show that, if we have exponential incremental stability,
then there exists a function P meeting the above requirements.
Specifically, we have the following proposition.

Proposition 4 (Incremental Stability): Assume the system
(2) is forward complete with a function f which is C3 with
bounded first, second, and third derivatives. Let X(x, t) denotes
its solutions. Then, we have P1 ⇒ P2 ⇒ P3 (and, therefore,
P1 ⇔ P2 ⇔ P3).

In other words, exponential incremental stability property is
equivalent to the existence of a Riemannian distance which is
contracted by the flow and can be used as a δ-GAS Lyapunov
function. Note also that, despite the fact that the main results in
Section II are local, when we restrict ourselves to the incremen-
tal stability problem, we can obtain a global result.

Proof—P1 ⇒ P2 ⇒ P3: Consider the system (3) and
let nx = ne = n. The boundedness of the first derivative of f
implies the forward completeness of the corresponding systems
(1) and (5). Moreover, the inequalities (13)–(15) with r = +∞
follow from the assumption of boundedness of the derivatives
of f .

As a consequence, P1⇒ P2 follows from Proposition 1 and
P2⇒ P3 from Proposition 2. Note, however, that it remains to

show that P defined in (16) is C2. This is obtained employing
the boundedness of the first, second, and third derivatives of f .
Indeed, note that we have for all (t, x)(∂Ẽ/∂e)(0, x, t) =
(∂X/∂x)(x, t). So, to show that P is C1, it suffices to show
that the mapping t �→ (∂2X/∂xi∂x)(x, t) goes exponentially
to zero as time goes to infinity. Note that this is indeed the case
since, given a vector v in R

n and i in {1, . . . , n}, the mapping
ν(t) = (∂2X/∂xi∂x)(x, t)v is the solution to

ν̇=
∂f

∂x
(X(x, t)) ν+

n∑
j=1

∂2f

∂xj∂x
(X(x, t))

∂Xj

∂xi
(x,t)

∂X

∂x
(x,t)v.

Hence, from (21), (19), and the fact that f has bounded second
derivatives, it yields the existence of a positive real number c̃
such that

�̇ν ′P (X(x, t)) ν ≤ −ν ′Qν + c̃|ν|
∣∣∣∣∂X∂x (x, t)

∣∣∣∣2 .
Since t �→ (∂X/∂x)(x, t) exponentially goes to zero as time
goes to infinity, it implies that ν exponentially goes to zero.
Hence, P is C1. Employing the bound on the third derivative
and following the same route, it follows that P is C2. �

III. APPLICATIONS

In this section, we apply Propositions 1, 2, and 3 in two
different contexts: full order observer and synchronization.

A. Nonlinear Observer Design

Consider a system

ẋ = f(x), y = h(x) (23)

with state x in R
n and output y in R

p, augmented with a state
observer of the particular form

˙̂x = f(x̂) +K(y, x̂) (24)

with state x̂ in R
n and where

K(h(x), x) = 0 ∀x. (25)

Assuming the functions f , h, andK are C2, we are interested in
having the manifold {(x, x̂) : x = x̂} exponentially stable for
the overall system

ẋ = f(x), ˙̂x = f(x̂) +K(y, x̂). (26)

When specified to this context, the properties TULES-NL,
UES-TL, and ULMTE are

Exponentially convergent observer (TULES-NL): The sys-
tem (26) is forward complete and there exist strictly
positive real numbers r, k, and λ such that we have, for
all (x, x̂, t) in R

n × R
nx × R≥0 satisfying |x0 − x̂0| ≤ r,

we have∣∣∣X(x0, t)− X̂(x0, x̂0, t)
∣∣∣ ≤ k|x0 − x̂0| exp(−λt). (27)
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UES-TL FOR OBSERVER The system ẋ = f(x) is forward
complete and there exist strictly positive real numbers k̃

and λ̃ such that any solution (Ẽ(ẽ0, x0, t), X(x0, t)) of the
transversally linear system

˙̃e =

[
∂f

∂x
(x) +

∂K

∂y
(h(x), x)

∂h

∂x
(x)

]
ẽ, ẋ = f(x) (28)

satisfies, for all (ẽ0, x0, t) in R
n × R

n × R≥0,∣∣∣Ẽ(ẽ0, x0, t)
∣∣∣ ≤ k̃ exp(−λ̃t)|ẽ0|. (29)

ULMTE FOR OBSERVER: For all positive definite matrix
Q, there exists a continuous function P : Rn → R

n×n and
strictly positive real numbers p and p such that we have,
for all x in R

n, pI ≤ P (x) ≤ pI and

dfP (x) + 2Sym

(
P (x)

[
∂f

∂x
(x)

+
∂K

∂y
(h(x), x)

∂h

∂x
(x)

])
≤ −Q. (30)

where Sym(A) = A+A′.

Propositions 1, 2, and 3 give conditions under which these
properties are equivalent. But these properties assume the data
of the correction term K . Hence, by rewriting UES-TEL and
TULES-NL in a way in which the design parameter K dis-
appears, these propositions give necessary conditions for the
existence of an exponentially convergent observer.

Property UES-TL involves the existence of an observer with
correction term depending on x for the time-varying linear
system resulting from the linearization along a solution to the
system (23), i.e.,

˙̃e =
∂f

∂x
(x)ẽ, ỹ =

∂h

∂x
(x)ẽ (31)

seeing ỹ as output. As a consequence of Proposition 1, a
necessary condition for Property UES-TL to hold and further,
when some derivatives are bounded, for the existence of an
exponentially convergent observer is that the system (23) be
infinitesimally detectable in the following sense

1) Infinitesimal detectability We say that the system (23) is
infinitesimally detectable if every solution of

ẋ = f(x), ˙̃e =
∂f

∂x
(x)ẽ,

∂h

∂x
(x)ẽ = 0

defined on [0,+∞) satisfies limt→+∞ |Ẽ(e, x, t)| = 0.
A similar necessary condition has been established in [1] for
a larger class of observers, but under an extra assumption (the
existence of a locally quadratic Lyapunov function).

Example 1: Consider the planar system

ẋ1 = x3
2, ẋ2 = −x1, y = x1. (32)

We wish to know whether or not it is possible to design an
exponentially convergent observer for this nonlinear oscillator
in the form of (24). The linearized system is

˙̃e1 = 3x2
2ẽ2,

˙̃e2 = −ẽ1, ỹ = ẽ1. (33)

This system is not detectable when the solution, along which we
linearize, is the origin which is an equilibrium of (32). Conse-

quently, the system (32) is not infinitesimally detectable on R
2,

and so there is no exponentially convergent observer on R
2.

Fortunately, the subset {x ∈ R
2 : (x2

1/2) + (x4
2/4) ≥ ε}, with

ε > 0, is invariant and (32) is infinitesimally detectable in it.
To design a correction term K for an exponentially conver-

gent observer, we use the property that

L(y, x) =
∂K

∂y
(y, x)

should be an observer gain for the linear system (33). So, we
start our design by selecting L. We pick

L(y, x) =

[
−3x2

2

−3x2
2 + 1

]
.

This gives [see (28)]

A(x) =
∂f

∂x
(x) +

∂K

∂y
(h(x), x)

∂h

∂x
(x) = 3x2

[
−1 1
0 −1

]
.

The transition matrix generated by A(X(x, t)) when X(x, t) is
a solution of (32) is

Φ(t, 0) = exp (−I(t))

[
1 I(t)
0 1

]
where

I(t) = 3

t∫
0

X2(x, s)
2ds.

Since X2(x, t) is periodic, (29) holds when the initial condition
x is in the compact invariant subset

C =

{
x ∈ R

2 :
1

ε
≥ x2

1

2
+

x4
2

4
≥ ε

}
. (34)

Then, according to Propositions 2 and 3, and in view of (25), we
obtain an exponentially convergent observer by choosing K as

K(y, x) =

y∫
x1

L(s, x)ds =

[
−3x2

2

−3x2
2 + 1

]
(y − x1).

Similarly, Property ULMTE involves the existence of P
and K such that (30) holds. By restricting this inequality on
quadratic forms to vectors which are in the kernel of ∂h/∂x,
we obtain as a consequence of Propositions 1 and 2, that a
necessary condition for Property ULMTE to hold and further,
when some derivatives are bounded, for the existence of an
exponentially convergent observer is that the system (23) be
R-detectable (R for Riemann) in the following sense.

R-Detectability We say that the system (23) is R-detectable
if there exist a continuous function P : Rn → R

n×n and
positive real numbers 0 < p ≤ p and 0 < q such that P has
a derivative dfP along f in the sense of (22) and we have

pI ≤ P (x) ≤ pI ∀x ∈ R
n (35)

v′dfP (x̃)v + 2v′P (x̃)
∂f

∂x
(x)v ≤ −qv′P (x)v (36)

holds for all (x, v) inRn×R
n satisfying (∂h/∂x)(x)v=0.
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A similar necessary condition has been established in [27],
where only asymptotic and not exponential convergence is
assumed. In that case, the condition allows p and q to be zero.

Further, it is established in [28] that when the R-detectability
holds then

K(y, x) = kP (x)−1 ∂h

∂x
(x)T (y − h(x))

gives, for k large enough, a (locally) exponentially convergent
observer.

Example 1 continued: For the system (32), the necessary

R-Detectability condition is the existenceof P =

(
P11 P12

P12 P22

)
satisfying, in particular, (36) which is [see (34)]

∂P22

∂x1
(x)x3

2−
∂P22

∂x2
(x)x1 + 6P12(x)x

2
2 <−qP22(x) ∀x ∈ C.

(37)

We view this as a condition on P22 only, since whatever P12

is, we can always pick P11 to satisfy (35). Note also that we
can take care of any term with x2

2 in factor by selecting P12

appropriately. With this, it can be shown that it is sufficient to
pick P22 in the form(

r(x)

2
≤
)

P22(x) = r(x) +
x1x2√
r(x)

+ x2
2 (≤ 3r(x))

where the presence of r defined below is justified by homogene-
ity considerations

(4ε ≤) r(x) =
√
2x2

1 + x4
2

(
≤ 4

ε

)
.

This motivates us to design

P12(x) = − 5

24

x2
2√
r(x)

− 1

3

√
r(x).

In this case, the left hand side in the inequality (37) is

− x2
1√
r
− 1

4

x4
2√
r(x)

+ 2x1x2 − 2
√
r(x)x2

2

≤ −1

4
r(x)

√
r(x) ≤ −

√
r(x)

12
P22(x) ≤ −

√
ε

6
P22(x).

Finally, by choosing

P11(x) = 2 +
P12(x)

2

P22(x)− r(x)
4

it can be shown that we obtain

εI ≤ min

{
1,

r(x)

4

}
I ≤ P (x) ≤ 3max {1, r(x)} I ≤ 12

ε
.

Hence, (35) holds on C. From this, the correction term

K(y, x) =
kP22(x)

P11P22(x)− P12(x)2

(
P22(x)
−P12(x)

)
(y − x1)

gives a (locally) convergent observer on C.

B. Exponential Synchronization

Finally, we revisit the synchronization problem as another
class of control problems that can be dealt with the results
in Section II. We consider here the synchronization of m ≥ 2
identical systems given by

ẇi = f(wi) + g(wi)ui, i = 1, . . . ,m. (38)

In this setting, all systems have the same drift vector field f
and the same control vector field g : Rn → R

n×p, but not the
same controls in R

p. The state of the whole system is denoted
w = (w1, . . . wm) in R

mn. We also define the diagonal subset
of Rmn

D = {(w1, . . . , wm) ∈ R
mn, w1 = w2 . . . = wm} .

Given w in R
mn, we denote the Euclidean distance to the set D

as |w|D . The synchronization problem that we consider in this
section is as follows.

Definition 1: The control laws ui = φi(w), w = (w1, . . . ,
wm), i = 1 . . . ,m solve the local uniform exponential synchro-
nization problem for (38) if the following holds:

1) φ is invariant by permutation of agents. More precisely,
given a permutation π : {1, . . .m} �→ {1, . . .m}

φπi
(w1, . . . , wm) = φi (wπ1

, . . . , wπm
) .

2) φ is zero on D:

φ(w) = 0 ∀w ∈ D (39)

3) and the set D is uniformly exponentially stable for the
closed-loop system, i.e., there exist positive real numbers
rw, k and λ > 0 such that, for all w in R

mn satisfying
|w|D < rw,

|W (w, t)|D ≤ k exp(−λt)|w|D (40)

holds for all t in the domain of existence of the solutions
W (w, t) going through w at t = 0.

When rw = ∞, it is called the global uniform exponential
synchronization problem.

In this context, we assume that every agent shares an infor-
mation (which will be designed later) to all other agents (in
which case, it forms a complete graph) and it has local access
to its state variables.

It is possible to rewrite the property of having the manifold
D exponentially stable as property TULES-NL. As it has been
done in the observer design context, employing Propositions 1
and 2 and by rewriting properties UES-TL and ULMTE it is
possible to give equivalent characterization of the synchroniza-
tion property. By rewriting these conditions in a way in which
the control law disappears, these properties give necessary
conditions to achieve exponential synchronization.

Proposition 5 (Necessary Condition): Consider the systems
in (38) and assume the existence of control laws ui = φi(w),
i = 1, . . .m that solve the uniform exponential synchronization
of (38). Assume moreover that g is bounded and f , g and
the φi’s have bounded first and second derivatives. Then, the
following two properties hold.
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Q1: The origin of the transversally linear system

˙̃e =
∂f

∂x
(x̃)ẽ + g(x̃)u, ˙̃x = f(x̃) (41)

is stabilizable by a (linear in ẽ) state feedback.
Q2: For every positive definite matrix Q, there exist a contin-

uous function P : Rn → R
n×n and positive real numbers

p and p such that inequalities (19) are satisfied, P has a
derivative dfP along f in the sense of (22), and

dfv
′P (x)v + 2v′P (x)

∂f

∂x
(x)v ≤ −v′Qv (42)

holds for all (v, x) in R
2n satisfying v′P (x)g(x) = 0.

Proof: First of all, note that the vector fields having
bounded first derivatives, it implies that the system is complete.
Consider (i, j, k, l), 4 integers in {1, . . . ,m} and consider a
permutation π : {1, . . . ,m} �→ {1, . . . ,m} such that πi = k
and πj = �. Note that k = � if and only if i = j. Note that the
invariance by permutation implies

φk(w) = φi (wπ1
, . . . , wπm

) .

Hence, it follows that

∂φk

∂w�
(w) =

∂φi

∂wj
(wπ1

, . . . , wπm
)

and if we consider w in D, this implies

∂φk

∂w�
(w) =

∂φi

∂wj
(w), i �= j, k �= �

∂φj

∂wj
(w) =

∂φi

∂wi
(w).

By denoting e = (e2, . . . em) with ei = wi − w1, i = 2, . . .m,
and x = w1, we obtain an (e, x)-system of the type (1) with

F (e, x) = (Fi(e, x))i=2,...m (43)

Fi(e, x) = f(x+ ei)− f(x)

+ g(x+ ei)φ̄i(e, x)− g(x)φ̄1(e, x) (44)

G(e, x) = f(x) + g(x)φ̄1(e, x) (45)

where we have used the notation

φ̄i(e, x) = φi(x, x+ e2, . . . , x+ en).

Note that we have

|e|2 ≤ (m− 1)|w|2D (46)

|w|2D ≤ |e|2 + (m− 1)

∣∣∣∣∣
m∑
i=1

w1 − wi

m

∣∣∣∣∣
2

≤
(
1 +

m− 1

m2

)
|e|2 (47)

Hence, (40) implies for all (e, x) with |e| ≤ (mrw/√
m2 +m− 1)

|E(e, x, t)| ≤

√
(m− 1)

(
1 +

m− 1

m2

)
k exp(−λt)|e|.

It follows from the assumptions of the proposition that Property
TULES-NL is satisfied with r = mrw/

√
m2 +m− 1 and that

inequalities (13) and (14) hold. We conclude with Proposition 1
that Property UES-TL is satisfied also. So, in particular, there
exist positive real numbers k̃ and λ̃ such that any ei compo-
nent of (Ẽ(ẽ0, x̃0, t), X̃(x̃0, t)) solution of (6) satisfies, for all
(ẽ0, x̃0, t) in R

mn × R
mn × R≥0,∣∣∣Ẽi(ẽ0, x̃, t)

∣∣∣ ≤ k̃ exp(−λ̃t)|ẽ0|. (48)

On another hand, with (39), we obtain:

∂Fi

∂ei
(0, x̃) =

∂f

∂x
(x̃) + g(x̃)

[
∂φ̄i

∂ei
(0, x̃)− ∂φ̄1

∂ei
(0, x̃)

]
. (49)

And, when j �= i, it yields

∂Fi

∂ej
(0, x̃) = g(x̃)

[
∂φ̄i

∂ej
(0, x̃)− ∂φ̄1

∂ej
(0, x̃)

]
= 0. (50)

Consequently, any solution of the system

˙̃ei =

[
∂f

∂x
(x̃) + g(x̃)

[
∂φ̄i

∂ei
(0, x̃)− ∂φ̄1

∂ei
(0, x̃)

]]
ẽi

and ˙̃x = f(x̃) can be expressed as an ei component of (Ẽ(ẽ0,

x̃0, t), X̃(x̃0, t)) solution of (6) Since these solutions satisfy
(48), Property Q1 does hold.

Finally, we consider the system with state (ei, x) in R
2n

ėi = F̄i(ei, x), ẋ = G(ei, x) = f(x) (51)

with F̄i(ei, x) = Fi((0, ei, 0), x). The previous property and
Proposition 2 imply that Property ULMTE is satisfied for
system (51). So, in particular, we have a function P satisfying
the properties in Q2 and such that we have, for all (v, x) in
R

n × R
n,

v′dfP (x̃)v+2v′P (x̃)

(
∂f

∂x
(x̃)+g(x̃)

[
∂φ̄i

∂ei
(0,x̃)−∂φ̄1

∂ei
(0,x̃)

])
v

≤ −v′Qv

which implies (42) when v′P (x)g(x) = 0. �
Example 2: As an illustrative example consider the case

in which the system is given by by m agents wi in R
2 with

individual dynamics

ẇi1 = wi2 + 2 sin(wi2), ẇi2 = a+ ui (52)

where a is a real number. Because of a singularity when
1 + 2 cos(wi2) = 0, this system is not feedback linearizable
per se. Hence, the design of a synchronizing controller may be
involved.
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In order to check if local synchronization in the sense of
Definition 1 is possible, the necessary conditions of Proposition 5
may be tested. The transversally linear system is

˙̃e =

[
0 1 + 2 cos(x0 + at)
0 0

]
ẽ+

[
0
1

]
u. (53)

When a = 0 and x0 = 2π/3, this system is not stabilizable by
any feedback law. Hence, in this case, with Proposition 5, there
is no exponentially synchronizing control law in the sense of
Definition 1 satisfying (39) in particular.

Similar to the analysis of incremental stability in the previous
section and observer design in [27], by using a function P
satisfying the property Q2 in Proposition 5, we can obtain
sufficient conditions for the solvability of uniform exponential
synchronization of (38).

We do this under an extra assumption which is that, up to a
scaling factor, the control vector field g is a gradient field with
P as Riemannian metric.

Proposition 6 (Local Sufficient Condition): Assume f has
bounded first and second derivatives, and g is bounded and has
bounded first and second derivatives. Moreover, assume that

1) there exist a C2 function U : Rn → R and a bounded
C2 function α : Rn → R

p which has bounded first and
second derivative such that

∂U

∂x
(x)′ = P (x)g(x)α(x) (54)

holds for all x in R
n; and

2) there exist a positive definite matrix Q, a C2 function P :
R

n → R
n×n with bounded derivative, and positive real

numbers p, p and ρ > 0 such that (19) is satisfied and

v′dfP (x)v + 2v′P (x)
∂f

∂x
(x)v−ρ

∣∣∣∣∂U∂x (x)v

∣∣∣∣2 ≤ −v′Qv

(55)

holds for all (x, v) in R
n × R

n.

Then, there exist a real number � such that with the control laws
ui = φi(w) given by

φi(w) = �α(wi)

⎡⎣ m∑
j=1

U(wj)

m
− U(wi)

⎤⎦ (56)

and � ≥ � and if the closed loop system is complete, then the
local uniform exponential synchronization of (38) is solved.

Note that, for its implementation, the control law (56) re-
quires that each agent i communicates U(wi) to all the other
agents.

Proof: First of all, note that the control law φi is invariant
by permutation due to its structure. Let e = (e2, . . . , em) with
ei = x1 − xi and x = x1. We obtain an (e, x)-system of the
type (1) with F and G as defined in (43)–(45) with φ as control
input. For this system, we will show that property ULMTE is
satisfied. Consider the function Pm : Rn → R

(m−1)n×(m−1)n

defined as a block diagonal matrix composed of (m− 1)
matrices P , i.e., Pm(x) = Diag(P (x), . . . , P (x)). Note that

with property (49) and (50), it yields that (∂F/∂e)(0, x̃) is also
(m− 1) block diagonal. Hence, we have

dG̃Pm(x̃) + Pm(x̃)
∂F

∂e
(0, x̃) +

∂F

∂e
(0, x̃)′Pm(x̃)

= Diag {R(x̃)), . . . , R(x̃))}

where

R(x̃) = dfP (x̃)v + P (x̃)

[
∂f

∂x
(x̃)− �g(x̃)α(x̃)

∂U

∂x
(x̃)

]

+

[
∂f

∂x
(x̃)− �g(x̃)α(x̃)

∂U

∂x
(x̃)

]′
P (x̃).

With (55), this gives

v′R(x̃)v ≤ −v′Qv + (k − 2�)

∣∣∣∣∂U∂x (x̃)v

∣∣∣∣2 .
for all (x̃, v) in R

n × R
n. Hence, picking � > (k/2), inequality

(9) holds. To apply proposition 3, it remains to show that in-
equalities (15), (17) and (18) are satisfied. Note that employing
the bounds on the functions P , f , g, α, and their derivatives, it
is possible to get a positive real number c̃ (depending on �) such
that for all i in 2, . . . ,m and all (e, x)∣∣∣∣∂Fi

∂ei
(e, x)

∣∣∣∣ ≤ c̃

∣∣∣∣∣∣
m∑
j=1

U(x+ ei)

m
− U(x+ ei)

∣∣∣∣∣∣+ c̃

∣∣∣∣ ∂Fi

∂ei∂x
(e, x)

∣∣∣∣ ≤ c̃

∣∣∣∣∣∣
m∑
j=1

U(x+ ei)

m
− U(x+ ei)

∣∣∣∣∣∣+ c̃

∣∣∣∣ ∂Fi

∂ei∂ej
(e, x)

∣∣∣∣ ≤ c̃

∣∣∣∣∣∣
m∑
j=1

U(x+ ei)

m
− U(x+ ei)

∣∣∣∣∣∣+ c̃

∣∣∣∣∣∣
m∑
j=1

U(x+ ei)

m
− U(x+ ei)

∣∣∣∣∣∣ ≤ c̃|e|, ∀ (e, x).

So, we fix η positive and pick c = c̃2η + c̃. The above shows
that inequalities (17) and (18) are satisfied. With Proposition 3,
we conclude that Property TULES-NL holds. Hence, e = 0 is
(locally) exponentially stable manifold. With inequalities (46)
and (47), this implies that inequality (40) holds. �

In this result, it is important to remark that there is no
guarantee that the control law given here ensures completeness
of the solution. Note, however, that on the manifold |w|D = 0,
the trajectories satisfy ẋ = f(x) which is a complete system

Example 2 (continued): We come back to the example
(52) in the case where a = 1. We note that the linear system
(53) is stabilizable by a feedback in the form

u = − (1 + 2(cos(x0 + t)) [2 3]ẽ.

Indeed, the solution of (53) with the previous feedback satisfies

˙̃e = (1 + cos(x0 + t))

[
0 1
−2 −3

]
ẽ.
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Hence, its solutions are Ẽ(e, x, t) = ψ(x, t)ẽ, where ψ is the
generator of this time varying linear system given as

ψ(x, t) = exp

(
(t+ 2 sin(x+ t)

[
0 1
−2 −3

])

=ϕ(x, t)−2

[
−1 + 2ϕ(x, t) −1 + ϕ(x, t)
2 (1− ϕ(x, t)) 2− ϕ(x, t)

]

with ϕ(x, t) = et+2sin(t+x).
Consequently, we get that ẽ goes exponentially to zero.

Hence, Property Q1 is satisfied.
We can then introduce the matrix P solution to Q2 and given

in (16) as

P (x) =

+∞∫
0

ψ(x, s)′ψ(x, s)ds. (57)

This matrix is positive definite and satisfies property Q2. So, we
may want to use it for designing an exponentially synchronizing
control law. With decomposing the 2 × 2 matrix P as

P (wi) =

[
P11(wi2) P12(wi2)
P12(wi2) P22(wi2)

]
we obtain P (w)g(w) = [P12(wi2) P22(wi2)]

′. Note that it can
be shown (numerically) that

P12(wi2) =

∞∫
0

4

ϕ(wi2, t)2
− 9

ϕ(wi2, t)3
+

5

ϕ(wi2, t)4
dt > 0.

It follows the that function α(w) = 1/P12(wi2) is well defined
and setting

U(wi) = wi1 +

wi2∫
0

P22(s)

P12(s)
ds

property (54) is satisfied. Hence, for this example, picking � a
sufficiently large real number, the control law (56) ensures local
exponential synchronization of m agents. We have checked this
via simulation for the case m = 5, � = 3. The time evolution of
the solution with wi(0), i = 1, . . . , 5 chosen randomly accord-
ing to a uniform distribution on [0, 10] is shown in Fig. 1(a) for
wi1 and Fig. 1(b) for wi2.

As in the context of the observer design given in [27], a global
result can be obtained by imposing a further constraint on P .
Specifically, the notion we need to introduce is the following.

Definition 2 (Totally Geodesically Set): Given a C2 function
P defined on R

n the values of which are symmetric positive
definite matrices, a C1 function ϕ : Rn → R+ and a real num-
ber ϕ̄, the (level) set S = {x ∈ R

n, ϕ(x) = ϕ̄} is said to be
totally geodesic with respect to P if, for any (x, v) in S × R

n

such that

∂ϕ

∂x
(x)v = 0, v′P (x)v = 1

Fig. 1. Numerical simulation results of the interconnected five agents as
considered in Example 1. The left-figure shows the trajectories of the first
state variable of each agent, wi1, i = 1 . . . 5 while the right-figure shows those
of the second state variable of each agent wi2, i = 1 . . . 5. The simulation
results show that the proposed contraction-based distributed control law is able
to synchronize the states wi, i = 1 . . . 5. (a) The plot of wi1, i = 1, . . . 5;
(b) the plot of wi2, i = 1, . . . 5.

any geodesic γ, i.e., a solution of

d

ds

(
dγ∗

ds
(s)′P (γ∗(s))

)
l

=
1

2

∂

∂x

(
dγ∗

ds
(s)′P (x)

dγ∗

ds
(s)

)∣∣∣∣
x=γ∗(s)

(58)

with γ(0)=x and (dγ/ds)(0)=v satisfies (∂ϕ/∂x)(γ(s))(dγ/
ds)(s) = 0 for all s.

For the case of two agents only, we have the following.
Proposition 7 (Global Sufficient Condition for m = 2):

Assume

1) there exist a C3 functionU : Rn → R which has bounded
first and second derivatives, and a C1 function α : Rn →
R

p such that, for all x in R
n, (54) is satisfied;
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2) there exist a positive real number λ, a C3 function P :
R

n → R
n×n and positive real numbers p and p, such that

inequalities (19) hold and we have, for all (x, v) in R
n ×

R
n such that (∂U/∂x)(x)′v = 0

1

2
v′dfP (x)v + v′P (x)

∂f

∂x
(x)v ≤ −λv′P (x)v. (59)

3) For all Ū in R, the set S = {x ∈ R
n, U(x) = Ū} is

totally geodesic with respect to P .

Then, there exists a function � : R2n → R+, invariant by per-
mutation such that, with the controls given by

φi(w) = �(w)α(wi) (U(wj)− U(wi))

with (i, j) ∈ {(1, 2), (2, 1)}, the following holds and for all w
in R

2n,

|W (w, t)|D ≤ k|w|D exp

(
−λ

2
t

)
(60)

where t is any positive real number in the time domain of
definition of the closed loop solution.

The proof of this result is given in Appendix D. It borrows
some ideas of [27]. However, different from [27], we have here
a global convergence result. This follows from the fact that in
the high gain parameter �, the norm of the full state space can be
used (and not only the norm of the estimate as in the observer
case).

Note that nothing is said about the domain of existence of the
solution.

IV. CONCLUSION

We have studied the relationship between the exponential sta-
bility of an invariant manifold and the existence of a Riemannian
metric for which the flow is “transversally” contracting. It was
shown that the following properties are equivalent

1) A manifold is “transversally” exponentially stable.
2) The “transverse” linearization along any solution in the

manifold is exponentially stable.
3) There exists a field of positive definite quadratic forms

whose restrictions to the transverse direction to the man-
ifold are decreasing along the flow.

As an illustrative example for these equivalence results, we
have revisited the property of exponential incremental stability
where we can obtain a global result.

The characterization of transverse exponential stability has
allowed us to investigate a necessary condition for two dif-
ferent control problems of nonlinear observer design and of
synchronization of nonlinear multi-agent systems which leads
to a novel constructive design for each problem. Recent results
by others has also shown the applicability of our results beyond
these two control problems. Although the main results hold
for local uniform transverse exponential stability, we show that
global results can also be obtained in some particular cases.
The extension of all the results to the global case is currently
under study.

APPENDIX

A. Proof of Proposition 1

Proof: Let us start with some estimations. Let z = e− ẽ.
Along solutions of (1) and (6), we have

ż = F (e, x)− ∂F

∂e
(0, x̃)ẽ =

∂F

∂e
(0, x̃)z +Δ(x, e, x̃)

with the notation

Δ(e, x, x̃) =F (e, x)− ∂F

∂e
(0, x̃)e

= [F (e, x)− F (e, x̃)]

+

[
F (e, x̃)− F (0, x̃)− ∂F

∂e
(0, x̃)e

]
.

Note that the manifold E := {(e, x) : e = 0} being invariant, it
yields

F (0, x) = 0 ∀x. (61)

With Hadamard’s lemma, (61) and (14), we obtain the existence
of positive real numbers c1 and c2 such that, for all (e, x, x̃) in
Be(kr) × R

nx × R
nx ,

|Δ(e, x, x̃)| ≤ c1|e|2 + c2|e||x− x̃|.

This, with (15), gives, for all (e, ẽ, x, x̃) in Be(kr)× R
ne ×

R
nx × R

nx ,1

�̇|z| ≤ μ|z|+ c1|e|2 + c2|e||x− x̃|. (62)

Similarly, (1), (6), and (14) give, for all (e, x, x̃) in Be(kr)×
R

nx × R
nx ,

�̇|x− x̃|
≤ |G(e, x) −G(0, x)|+ |G(0, x)−G(0, x̃)|
≤ c|e|+ ρ|x− x̃|. (63)

Now, let r̃ be a positive real number smaller than r and
S be a positive real number both to be made precise later
on. Let ẽ0 in Be(r̃) and x̃0 in R

nx be arbitrary and let
(Ẽ(ẽ0, x̃0, t), X̃(x̃0, t)) be the corresponding solution of (6).
Because of the completeness assumption on (1), the linearity
of (6) and the fact that (0, X̃(x̃0, t)) is solution of both (1) and
(6), (Ẽ, X̃) is defined on [0,+∞). We denote:

ẽi = Ẽ(ẽ0, x̃0, iS), x̃i = X̃(x̃0, iS) ∀ i ∈ N

and consider the corresponding solutions (E(ẽi, x̃i, s), X(ẽi,
x̃i, s)) of (1). By assumption, they are defined on [0,+∞) and,

1Here, the notation
˙
�|z| is abusive. The function x �→ |x| is not C1, but

only Lipschitz. Nevertheless, given a vector field f an upper right Dini Lie
derivative, i.e., lim suph→0+

((|x+ hf(x)| − |x|)/h) does exist and, by the
triangle inequality, we have

− |f(x)| ≤ lim sup
h→0+

|x+ hf(x)| − |x|
h

≤ |f(x)|.

So, here and in the following, �̇|x| denotes this upper right Dini Lie derivative.
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because of (4), if ẽi is in Be(r), then E(ẽi, x̃i, s) is in Be(kr)
for all positive times s, making possible the use of inequalities
(62) and (63). Finally, for each integer i, we define the following
time functions on [0, S]

Zi(s) =
∣∣∣E(ẽi, x̃i, s)− Ẽ(ẽ0, x̃0, s+ iS)

∣∣∣
Wi(s) =

∣∣∣X(ẽi, x̃i, s)− X̃(x̃0, s+ iS)
∣∣∣ .

Note that we have Zi(0) = Wi(0) = 0.
From the inequalities (63) and (7), we get, for each integer i

such that ẽi is in Be(r), and for all s in [0, S],

Wi(s) ≤ c

s∫
0

exp (ρ(s− σ)) |E(ẽi, x̃i, s)| dσ

≤ c

s∫
0

exp (ρ(s− σ)) k exp(−λσ)dσ|ẽi|

≤ ck exp(−λs)
exp ((ρ+ λ)s)− 1

ρ+ λ
|ẽi|.

Similarly, using (62) and Grönwall inequality we get

Zi(s)

≤c

s∫
0

exp(μ(s−σ)) |E(ẽi, x̃i, σ)|(|E(ẽi, x̃i, σ)|+Wi(σ))dσ

≤ γ(s)|ẽi|2 ∀ s ∈ [0, S]

where we have used the notation,

γ(s) = c

s∫
0

exp (μ(s− σ)) k exp(−2λσ)

×
(
k + ck exp(−λσ)

exp ((ρ+ λ)σ) − 1

ρ+ λ

)
dσ.

With all this, we have obtained that, if we have ẽj in Be(r) for
all j in {0, . . . , i}, then we have also, for all s in [0, S] and all j
in {0, . . . , i},∣∣∣Ẽ(ẽ0, x̃0, s+ jS)

∣∣∣ = ∣∣∣Ẽ(ẽj , x̃j , s)
∣∣∣

≤ |E(ẽj , x̃j , s)|+ |Zj(s)|

≤ [k exp(−λs) + γ(s)|ẽj |] |ẽj |

Now, given a real number ε in (0,1), we select S and r̃ to satisfy:

k exp(−λS) ≤ min{k, 1− ε}
2

r̃ ≤ min

{
r,

min{k, 1− ε}
2 sups∈[0,S] γ(s)

}
.

Then, for all ẽj smaller in norm than r̃, we have |Ẽ(ẽ0, x̃0, s+
jS)| ≤ (1− ε)|ẽj |. So, since ẽ0 is in Be(r̃), it follows by
induction that we have:

|ẽi| =
∣∣∣Ẽ(ẽ0, x̃0, iS)

∣∣∣ ≤ (1− ε)ir̃ ≤ r̃ ∀ i ∈ N.

Since, with (15), we have also �̇|ẽ| ≤ μ|ẽ|, we have established,
for all s in [0, S] and all i in N,∣∣∣Ẽ(ẽ0, x̃0, s+ iS)

∣∣∣ ≤ exp(μs)(1 − ε)i|ẽ0|

and therefore, for all (ẽ0, x̃0, t) in Be(a)× R
nx × R≥0,∣∣∣Ẽ(ẽ0, x̃0, t)

∣∣∣ ≤ exp(μS)(1− ε)
t−S
S |ẽ0|.

By rearranging this inequality and taking advantage of the
homogeneity of the system (6) in the ẽ component, we have
obtained (7) with k̃ = exp(μS)/(1− ε) and λ̃ = −(ln(1 −
ε)/S). �

B. Proof of Proposition 2

Proof: Let (Ẽ(ẽ0, x̃0, t), X̃(x̃0, t)) be the solution of (6)
passing through an arbitrary pair (ẽ0, x̃0) in R

ne × R
nx . By

assumption, it is defined on [0,+∞).
For any v in R

ne , we have

∂

∂t

(
∂Ẽ

∂ẽ
(0, x̃0, t)v

)
=

∂F

∂e

(
0, X̃(x̃0, t)

) ∂Ẽ

∂ẽ
(0, x̃0, t)v.

Uniqueness of solutions then implies, for all (ẽ0, x̃0, t) in
R

ne× R
nx× R≥0, Ẽ(ẽ0, x̃0, t) = (∂Ẽ/∂ẽ)(0, x̃0, t)ẽ0 and our

assumption (7) gives, for all (ẽ0, x̃0, t) in R
ne × R

nx × R≥0,
|(∂Ẽ/∂ẽ)(0, x̃0, t)ẽ0| ≤ k̃|ẽ0| exp(−λ̃t), and therefore∣∣∣∣∣∂Ẽ∂ẽ (0, x̃0, t)

∣∣∣∣∣ ≤ k̃ exp(−λ̃t) ∀ (x̃0, t) ∈ R
nx × R≥0.

This allows us to claim that, for every symmetric positive
definite matrix Q, the function P : Rnx → R

ne×ne given by
(16) is well defined, continuous, and satisfies

λmax {P (x̃)} ≤ k̃2

2λ̃
λmax{Q} = p ∀ x̃ ∈ R

nx .

Moreover, we have

∂

∂t

⎛⎝v′

[
∂Ẽ

∂ẽ
(0, x̃0, t)

]−1
⎞⎠

= −v′

[
∂Ẽ

∂ẽ
(0, x̃0, t)

]−1
∂F

∂e

(
0, X̃(x̃0, t)

)
.
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With (15), this yields |v′[(∂Ẽ/∂ẽ)(0, x̃0, t)]
−1| ≤ exp(μt)|v|

and implies

[v′v]
2

≤

∣∣∣∣∣∣v′
[
∂Ẽ

∂ẽ
(0, x̃0, t)

]−1
∣∣∣∣∣∣
2 ∣∣∣∣∣∂Ẽ∂ẽ (0, x̃0, t)v

∣∣∣∣∣
2

≤ 1

λmin{Q}

∣∣∣∣∣∣v′
[
∂Ẽ

∂ẽ
(0, x̃0, t)

]−1
∣∣∣∣∣∣
2

× v′
∂Ẽ

∂ẽ
(0, x̃0, t)

′Q
∂Ẽ

∂ẽ
(0, x̃0, t)v

≤ |v|2 exp(2μt)
λmin{Q} v′

∂Ẽ

∂ẽ
(0, x̃0, t)

′Q
∂Ẽ

∂ẽ
(0, x̃0, t)v.

This gives

p =
1

2μ
λmin{Q} ≤ λmin {P (x̃)} ∀ x̃ ∈ R

nx .

Finally, to get (9), let us exploit the semi group property of
the solutions. We have for all (ẽ, x̃) in R

nx × R
ne and all (t, r)

in R
2
≥0

Ẽ
(
Ẽ(ẽ, x̃, t), X̃(x̃, t), r

)
= Ẽ(ẽ, x̃, t+ r).

Differentiating with respect to ẽ, the previous equality yields

∂Ẽ

∂ẽ

(
Ẽ(ẽ, x̃, t), X̃(x̃, t), r

) ∂Ẽ

∂ẽ
(ẽ, x̃, t) =

∂Ẽ

∂ẽ
(ẽ, x̃, t+ r).

Setting in the previous equality

(ẽ, x̃) :=
(
0, X̃(x̃, h)

)
, h := −t, s := t+ r

we get for all x̃ in R
nx and all (s, h) in R

2

∂Ẽ

∂ẽ
(0, x̃, s+ h)

∂Ẽ

∂ẽ

(
0, X̃(x̃, h),−h

)
=

∂Ẽ

∂ẽ

(
0, X̃(x̃, h), s

)
.

Consequently, this yields

P
(
X̃(x̃, h)

)
= lim

T→+∞

T∫
0

(
∂Ẽ

∂e

(
0, X̃(x̃, h), s

))′

Q
∂Ẽ

∂ẽ

(
0, X̃(x̃, h), s

)
ds

= lim
T→+∞

(
∂Ẽ

∂ẽ

(
0, X̃(x̃, h),−h

))′

×

⎡⎣ T∫
0

(
∂Ẽ

∂ẽ
(0, x̃, s+ h)

)′

Q
∂Ẽ

∂ẽ
(0, x̃, s+ h)ds

⎤⎦
× ∂Ẽ

∂ẽ

(
0, X̃(x̃, h),−h

)
.

But we have:

lim
h→0

∂Ẽ
∂ẽ

(
0, X̃(x̃, h),−h

)
− I

h
= −∂F

∂e
(0, x̃)

lim
h→0

∂Ẽ
∂ẽ (0, x̃, s+ h)− ∂Ẽ

∂ẽ (0, x̃, s)

h
=

∂

∂s

(
∂Ẽ

∂ẽ
(0, x̃, s)

)
T∫

0

∂

∂s

(
∂Ẽ

∂ẽ
(0, x̃, s)

)′

Q

(
∂Ẽ

∂ẽ
(0, x̃, s)

)
ds

+

T∫
0

(
∂Ẽ

∂ẽ
(0, x̃, s)

)′

Q
∂

∂s

(
∂Ẽ

∂ẽ
(0, x̃, s)

)
ds

=

(
∂Ẽ

∂ẽ
(0, x̃, T )

)′

Q

(
∂Ẽ

∂ẽ
(0, x̃, T )

)
−Q.

Since limT and limh commute because of the exponential
convergence to 0 of (∂Ẽ/∂ẽ)(0, x̃, s), we conclude that the
derivative (8) does exist and satisfies (9). �

C. Proof of Proposition 3

Proof: Consider the function V (e, x) = e′P (x)e. Using (9),
the time derivative of V along the solutions of the system (1) is
given, for all (e, x), by

�̇V (e, x) = 2e′P (x)F (e, x) +
∂e′P (·)e

∂x
(x)G(e, x)

≤ −e′Qe+ 2e′P (x)

[
F (e, x)− ∂F

∂e
(0, x)e

]
+

∂e′P (·)e
∂x

(x) [G(e, x)−G(0, x)] .

On the other hand, using Hadamard’s Lemma and (18), we get:∣∣∣∣F (e, x)− ∂F

∂e
(0, x)e

∣∣∣∣ ≤ c|e|2

|G(e, x) −G(0, x)| ≤ c|e| ∀ (e, x) ∈ Be(η)× R
nx .

These inequalities together with (10) and (17) imply, for all
(e, x) in Be(η)× R

nx ,

�̇V (e, x) ≤ −
[
λmin{Q}

p
− 2c(1 + c)

p

p
|e|
]
V (e, x).

It shows immediately that (4) holds with r, k and λ satisfying:

r <
p

p
min

{
η,

λmin{Q}
2pc(1 + c)

}
k =

√
p

p

λ =

[
λmin{Q}

2p
− rc(1 + c)

p

p

]
.

�
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D. Proof of Proposition 7

The result holds when w is in D or when U is constant (since
(59) holds for all v). So, in view of [27, Proposition A.2.1], we
can assume without loss of generality that ∂U/∂w has nowhere
a zero norm and, in the following, we restrict our attention to
R

2n \ D. In R
2n \ D the dynamics of w is

ẇi = f(wi) + �(w)g(wi)α(wi)
2∑

j=1

[U(wj)− U(wi)] .

With the C2 matrix function P we define the Riemannian
length of a piece-wise C1 path γ : [s1, s2] → R

n, between
w1 = γ(s1) and w2 = γ(s2) as in (20) and the corresponding
distance d(w1, w2) by minimizing along all such path

Because of (19) and the fact that P is C3, Hopf-Rinow
Theorem implies the metric space we obtain this way is com-
plete, and, given any w1 in R

n and w2 in R
n, there exists a C3

normalized2 minimal geodesic γ∗, solution of (58), such that

w1 = γ∗(s1), w2 = γ∗(s2)

d(w1, w2) =L(γ∗)

∣∣∣∣s2
s1

= s2 − s1. (64)

Following [27], for each s in [s1, s2] consider the C1 function
t �→ Γ(s, t) solution of

∂Γ

∂t
(s, t) = f (Γ(s, t))

+ � (W (w, t)) g (Γ(s, t))α (Γ(s, t))

×
2∑

j=1

[U (Wj(w, t)) − U (Γ(s, t))]

with initial condition

Γ(s, 0) = γ∗(s). (65)

With (39), we have Γ(s1, t) = W1(w, t), Γ(s2, t) = W2(w, t)
and so, for each t, s ∈ [s1, s2] �→ Γ(s, t) is a C2 path between
W1(w, t) and W2(w, t). From the first variation formula (see
[31, Theorem 6.14] for instance),3 we have

d

dt

(
L (Γ(s, t))

∣∣∣∣s2
s1

)∣∣∣∣∣
t=0

= A(w) + C(w)

where

A(w) = �(w) [U(w1)− U(w2)]
dγ∗

ds
(s2)

′P (w2)g(w2)α(w2)

− �(w)[U(w2)−U(w1)]
dγ∗

ds
(s1)

′P (w1)g(w1)α(w1)

C(w) =
dγ∗

ds
(s2)

′P (w2)f(w2)−
dγ∗

ds
(s1)

′P (w1)f(w1).

But, with (54), we obtain:

A(w) = −�(w) [U(w2)− U(w1)]

×
[
∂U

∂x
(w2)

dγ∗

ds
(s2) +

∂U

∂x
(w1)

dγ∗

ds
(s1)

]
.

2This means that γ∗ satisfies (dγ∗/ds)(s)′P (γ∗(s))(dγ∗/ds)(s) = 1.
3In [31, Theorem 6.14], the result is stated with γ∗C∞ note however that

C2 is enough.

Also, with the Euler-Lagrange form of the geodesics(58), we get:

C(w)

=

s2∫
s1

[
d

ds

(
dγ∗

ds
(s)′P (γ∗(s))

)
f (γ∗(s))

+
dγ∗

ds
(s)′P (γ∗(s))

d

ds
(f (γ∗(s)))

]
ds

=

s2∫
s1

[
1

2

∂

∂x

(
dγ∗

ds
(s)′P (x)

dγ∗

ds
(s)

)∣∣∣∣
x=γ∗(s)

f (γ∗(s))

+
dγ∗

ds
(s)′P (γ∗(s))

∂f

∂x
(γ∗(s))

dγ∗

ds
(s)

]
ds.

Here the integrand is nothing but the left hand side of (59). With
a compactness argument4 we can show that condition (59) in
Proposition 7 is equivalent to the existence of a smooth function
ν : Rn → R+ such that, for all (x, v),

1

2
v′dfP (x)v + v′P (x)

∂f

∂x
(x)v

≤ −λv′P (x)v + ν(x)

∣∣∣∣∂U∂x (x)v

∣∣∣∣2 .
Hence, the geodesic being normalized, we have:

C(w) + λ

s2∫
s1

dγ∗

ds
(s)′P (γ∗(s)

dγ∗

ds
(s)ds

= C(w) + λd(w1, w2) ≤ B(w)

with the notation:

B(w) =

s2∫
s1

ν (γ∗(s))

∣∣∣∣∂U∂x (γ∗(s))
dγ∗

ds
(s)

∣∣∣∣2 ds.
From A and B we define two C2 functions a and b by dividing
by d(w1, w2) = s2 − s1. Namely, we define:

aγ∗(w, r)

=
U (γ∗(r + s1))− U(w1)

r

×
[
∂U

∂x
(γ∗(r+s1))

dγ∗

ds
(γ∗(r+s1))+

∂U

∂x
(w1)

dγ∗

ds
(s1)

]
(66)

bγ∗(w, r)

=
1

r

r+s1∫
s1

ν (γ∗(s))

∣∣∣∣∂U∂x (γ∗(s))
dγ∗

ds
(s)

∣∣∣∣2 ds. (67)

4The following two properties are equivalent a) v′f(x)v < 0 for all v with
|v| = 1 and all x satisfying g(x)v = 0 b) there exists ν such that v′f(x)v −
ν(x)|g(x)v|2 ≤ 0 for all v with |v| = 1 and all x. Proof b) ⇒ a) is trivial.
For the converse, let C be an arbitrary compact set, if b) does not hold for some
ηC and all x in C, there exist xi and vi with |vi| = 1 satisfying v′if(xi)vi ≥
i|g(xi)vi|2. With compactness this implies the existence of xω and vω with
|vω | = 1 satisfying g(xω)vω = 0 and v′ωf(xω)vω ≥ 0. This contradicts a).
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They are defined on R
2n \ D×]0, d(w1, w2)] and depend

a priori on the particular minimizing geodesic γ∗ we consider.
We extend by continuity (in r) their definition to R

2n \ D ×
[0, d(w1, w2)] by letting

aγ∗(w, 0) =2

∣∣∣∣∂U∂x (γ∗(s1))
dγ∗

ds
(s1)

∣∣∣∣2

bγ∗(w, 0) = ν (γ∗(s1))

∣∣∣∣∂U∂x (γ∗(s1))
dγ∗

ds
(s1)

∣∣∣∣2 .
In this way, for any pair (w1, w2) in R

2n \ D and any minimiz-
ing geodesic γ∗ between w1 and w2,

— the function r �→ (aγ∗(w, r), bγ∗(w, r)) is defined and
C15 on [0, d(w1, w2)],

— we have:

1

d(w1, w2)

d

dt

(
L

(
Γ(s, t)

)∣∣∣∣s2
s1

)∣∣∣∣∣
t=0

+ λ

≤ bγ∗ (w, d(w1, w2))− �(w)aγ∗ (w, d(w1, w2)) .

Also,
Lemma 1: For any pair (w1, w2) in R

2n \ D and any min-
imizing geodesic γ∗ between w1 and w2, aγ∗(w, d(w1, w2))
is non-negative, and if it is zero, the same holds for
bγ∗(w, d(w1, w2)).

Proof: For any pair w in R
2n \ D, the function r →

aγ∗(w, r) is defined and continuous on [0, d(w1, w2)].
If the real number

aγ∗(w, 0) = 2

∣∣∣∣∂U∂x (γ∗(s1))
dγ∗

ds
(s1)

∣∣∣∣2
is zero, the level sets of U being totally geodesic, we have

∂U
∂x (γ∗(r + s1))

dγ∗

ds (r + s1) = 0
U (γ∗(r + s1)) = U(w1),

∀ r ∈ [0, d(w1, w2)] .

and so U(w2) = U(w1) and aγ∗(w, d(w1, w2)) and bγ∗(w,
d(w1, w2)) are zero.

5This comes from this general result. Let f be a C2 function defined on
a neighborhood of 0 in R, where it is 0. The function ϕ defined as ϕ(r) =
f(r)/r if r �= 0 and ϕ(0) = f ′(0) is C1. Indeed it is clearly C2 everywhere
except may be at 0. Its first derivative is ϕ′(r) = (f(r) − rf ′(0))/r2 . It is
also continuous at 0 since limr→0 ϕ(r) = f ′(0) = ϕ(0). Its first derivative
at 0 exists if limr→0((ϕ(r) − ϕ(0))/r) = limr→0((f(r) − rf ′(0))/r2)
exists. But this is the case, since f being C2, we have

f(r) − rf ′(0)

r2
=

1

r2

r∫

0

[
f ′(s)− f ′(0)

]
ds

=
1

r2

r∫

0

s∫

0

f ′′(t)dt ds

=
1

r2

r∫

0

f ′′(t)[r − t]dt

which leads to ϕ′(0) = (1/2)f ′′(0). We have also (f(r) − rf ′(r))/r2 =
−(1/r2)

∫ r
0 sf ′′(s)ds. This implies limr→0 ϕ′(r) = ϕ′(0) and therefore ϕ′

is continuous.

If instead that real number is positive and

aγ∗ (w, d(w1, w2)) =
U (γ∗(s2))− U(w1)

d(w1, w2)

×
[
∂U

∂x
(γ∗(s2))

dγ∗

ds
(γ∗(s2)) +

∂U

∂x
(w1)

dγ∗

ds
(s1)

]
is non-positive, then there exists r0 in ]0, d(w1, w2)] such that

either U(γ∗(r0+s1))=U(w1). But, the level sets of U being
totally geodesic and γ∗ being a minimizing geodesic be-
tweenw1 andw2, and therefore betweenw1 andγ∗(r0+s1),
it follows from (the proof of) [27, Proposition A.3.2] that
γ∗ takes its values in the level set {x : U(x) = U(w1)},
at least on [s1, r0 + s1]. This implies

∂U

∂x
(γ∗(s))

dγ∗

ds
(s) = 0

for all s in [s1, r0 + s1] and, consequently, in [s1, s2].
This yields U(w2) = U(w1) and aγ∗(w, d(w1, w2)) and
bγ∗(w, d(w1, w2)) are zero;

or we have

∂U

∂x
(γ∗(r0 + s1))

dγ∗

ds
(γ∗(r0 + s1))

+
∂U

∂x
(γ∗(s1))

dγ∗

ds
(s1) = 0.

This implies that (∂U/∂x)(γ∗(s1))(dγ
∗/ds)(s1) and

(∂U/∂x)(γ∗(r0 + s1))(dγ
∗/ds)(r0 + s1) have opposite

signs and so the function r �→ (∂U/∂x)(γ∗(r + s1))
(dγ∗/ds)(r + s1) must vanish on ]0, r0[. Again, this im-
plies U(w2) = U(w1) and and aγ∗(w, d(w1, w2)) and
bγ∗(w, d(w1, w2)) are zero. �

Now, to each pair of integers (i1, i2), we associate the
compact set

Ci1i2 =
{
(w1, w2) ∈ R

2n :

i1≤d(w1, 0)≤ i1+1, i2≤d(w2, 0) ≤ i2 + 1} .

Lemma 2: For any pair (i1, i2), there exists a real number
�i1i2 such that, for all (w1, w2) in Ci1i2 \ D and all � larger or
equal to �i1i2 , we have:

b (w, d(w1, w2))− �a (w, d(w1, w2)) ≤
λ

2
. (68)

Proof: For the sake of getting a contradiction, assume
there exist a pair (i1, i2) and a sequence (w1k, w2k, γ

∗
k)k∈N of

points and minimizing geodesic satisfying

d(w1k, w2k) �=0

w1k = γ∗
k(0)

w2k = γ∗
k (d(w1k, w2k))

=w1k +

d(w1k,w2k)∫
0

dγ∗
k

ds
(s)ds (69)

− λ

2
+ bγ∗

k
(w1k, w2k, d(w1k, w2k))

≥ kaγ∗
k
(w1k, w2k, d(w1k, w2k)) ≥ 0. (70)
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Because the sequence (bγ∗
k
(w1k, w2k, d(w1k, w2k)))k∈N is

bounded, we have

lim
k→∞

aγ∗
k
(w1k, w2k, d(w1k, w2k)) = 0. (71)

The sequence (w1k, w2k)k∈N has a cluster point (w1ω , w2ω). To
keep the notations simple, we still denote by k, the index of the
subsequence for which we have convergence to this point.

Case 1—w1ω = w2ω = wω: Assume we have

lim
k→∞

d(w1k, w2k)= lim
k→∞

d(w1k, wω)= lim
k→∞

d(w2k, wω) = 0.

By compactness, C1 property, and boundedness, there exists a
real number M and an integer k∗ such that, for all k larger than
k∗, we have

aγ∗
k
(w1k, w2k, d(w1k, w2k))

≥ aγ∗
k
(w1k, w2k, 0)−Md(w1k, w2k)

≥ 2

∣∣∣∣∂U∂x (w1k)
dγ∗

k

ds
(0)

∣∣∣∣2 −Md(w1k, w2k)

bγ∗
k
(w1k, w2k, dw1k, w2k))

≤ bγ∗
k
(w1k, w2k, 0) +Md(w1k, w2k)

≤ ν(w1k)

∣∣∣∣∂U∂x (w1k)
dγ∗

k

ds
(0)

∣∣∣∣2 +Md(w1k, w2k).

This implies

− λ

2k
+

[
ν(w1k)

k
− 2

] ∣∣∣∣∂U∂x (w1k)
dγ∗

k

ds
(0)

∣∣∣∣2
≥ −M

[
1

k
+ 1

]
d(w1k, w2k)

and, therefore,

lim
k→∞

∣∣∣∣∂U∂x (w1k)
dγ∗

k

ds
(0)

∣∣∣∣2 = 0. (72)

Also, by compactness, (w2k − w1k)/d(w1k, w2k) has
a cluster point we denote as vω. With, again, k as index
for the subsequence (of the subsequence!), we have vω =
limk→∞((w2k − w1k)/d(w1k, w2k)). But, with (69), this
gives also vω = limk→∞(dγ∗

k/ds)(0) which, with (72), gives
(∂U/∂x)(wω)vω = 0 and implies limk→∞ bγ∗

k
(w1k, w2k,

d(w1k, w2k)) = 0. Since aγ∗
k
(w1k, w2k, d(w1k, w2k)) is non-

negative, this contradicts (70).
Case 2—w1ω �= w2ω: Assume now we have

lim
k→∞

d(w1k, w1ω) = lim
k→∞

d(w2k, w2ω) = 0

d(w1ω , w2ω) �=0.

(w1k, w2k) is in the compact set Ci1i2 and γ∗
k is a minimal

geodesic at least on [0, d(w1p, w2p)]. So, from:

√
p|w1 − w2| ≤ d(w1, w2) ≤

√
p|w1 − w2|

∀ (w1, w2) ∈ C × C

we get, for all s in [0, d(w1k, w2k)],√
p |γ∗

k(s)− w1k| ≤ d (γ∗
k(s), w1k) ≤ d(w1k, w2k) ≤ Di1i2

where Di1i2 = sup(w1,w2)∈Ci1i2
d(w1, w2). We have also

|w1k| ≤ |w2k − w1k|+ |w2k|

≤ d(w2k, w1k) + d(w2k, 0)√
p

≤ Di1i2 + (i2 + 1)
√
p

.

With the completeness of the metric, this implies that γ∗
k :

[0, Di1i2 ] → R
n takes its values in a compact set independent

of the index k and is a solution of the geodesic equation. It fol-
lows, for instance, from [10, Theorem 5, Section 1], that there
exist a subsequence (of the subsequence!) again with k as index
and a solution γ∗

ω of the geodesic equation satisfying, γ∗
ω(0) =

w1ω , γ∗
ωd(w1ω , w2ω)) = w2ω and limk→∞ γ∗

k(s) = γ∗
ω(s) uni-

formly in s ∈ [0, Di1i2 ]. Also, each γ∗
k being minimizing be-

tween w1k and w2k , γ∗
ω is minimizing between w1ω and w2ω

(see [26, Lemma II—.4.2]). With the definitions (66) and (67) of
aγ∗(w1, w2, d(w1, w2)) and bγ∗(w1, w2, d(w1, w2)) and with
(71) we obtain

aγ∗
ω
(w1ω , w2ω , d(w1ω , w2ω))

= lim
k→∞

aγ∗
k
(w1k, w2k, d(w1k, w2k)) = 0

bγ∗
ω
(w1ω , w2ω, d(w1ω , w2ω))

= lim
k→∞

bγ∗
k
(w1k, w2k, d(w1k, w2k)) .

With Lemma 1, we get bγ∗
ω
(w1ω , w2ω, d(w1ω , w2ω)) = 0. So,

as in the previous case, we get a contradiction of (70).
To complete the proof of Proposition 7, it is sufficient to

observe that for any pair (w1, w2) in R
2n, we can find (i1, i2)

such that Ci1i2 contains it. It is then sufficient to pick �(w1, w2)
larger or equal to �i1i2 to obtain, with (68),

D+d(w1, w2) ≤
d

dt

(
L (Γ(s, t))

∣∣∣∣s2
s1

)∣∣∣∣∣
t=0

≤ −λ

2
d(w1, w2).

This gives:√
p |W1(w1, w2, t)−W2(w1, w2, t)|

≤ d (W1(w1, w2, t)−W2(w1, w2, t))

≤ exp

(
−λ

2
t

)
d(w1, w2)

≤ exp

(
−λ

2
t

)√
p|w1 − w2|.

�
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