648 research outputs found

    A Localized Geometric-Distortion Resilient Digital Watermarking Scheme Using Two Kinds of Complementary Feature Points

    Get PDF
    With the rapid development of digital multimedia and internet techniques in the last few years, more and more digital images are being distributed to an ever-growing number of people for sharing, studying, or other purposes. Sharing images digitally is fast and cost-efficient thus highly desirable. However, most of those digital products are exposed without any protection. Thus, without authorization, such information can be easily transferred, copied, and tampered with by using digital multimedia editing software. Watermarking is a popular resolution to the strong need of copyright protection of digital multimedia. In the image forensics scenario, a digital watermark can be used as a tool to discriminate whether original content is tampered with or not. It is embedded on digital images as an invisible message and is used to demonstrate the proof by the owner. In this thesis, we propose a novel localized geometric-distortion resilient digital watermarking scheme to embed two invisible messages to images. Our proposed scheme utilizes two complementary watermarking techniques, namely, local circular region (LCR)-based techniques and block discrete cosine transform (DCT)-based techniques, to hide two pseudo-random binary sequences in two kinds of regions and extract these two sequences from their individual embedding regions. To this end, we use the histogram and mean statistically independent of the pixel position to embed one watermark in the LCRs, whose centers are the scale invariant feature transform (SIFT) feature points themselves that are robust against various affine transformations and common image processing attacks. This watermarking technique combines the advantages of SIFT feature point extraction, local histogram computing, and blind watermark embedding and extraction in the spatial domain to resist geometric distortions. We also use Watson’s DCT-based visual model to embed the other watermark in several rich textured 80×80 regions not covered by any embedding LCR. This watermarking technique combines the advantages of Harris feature point extraction, triangle tessellation and matching, the human visual system (HVS), the spread spectrum-based blind watermark embedding and extraction. The proposed technique then uses these combined features in a DCT domain to resist common image processing attacks and to reduce the watermark synchronization problem at the same time. These two techniques complement each other and therefore can resist geometric and common image processing attacks robustly. Our proposed watermarking approach is a robust watermarking technique that is capable of resisting geometric attacks, i.e., affine transformation (rotation, scaling, and translation) attacks and other common image processing (e.g., JPEG compression and filtering operations) attacks. It demonstrates more robustness and better performance as compared with some peer systems in the literature

    The Applications of Discrete Wavelet Transform in Image Processing: A Review

    Get PDF
    This paper reviews the newly published works on applying waves to image processing depending on the analysis of multiple solutions. the wavelet transformation reviewed in detail including wavelet function, integrated wavelet transformation, discrete wavelet transformation, rapid wavelet transformation, DWT properties, and DWT advantages. After reviewing the basics of wavelet transformation theory, various applications of wavelet are reviewed and multi-solution analysis, including image compression, image reduction, image optimization, and image watermark. In addition, we present the concept and theory of quadruple waves for the future progress of wavelet transform applications and quadruple solubility applications. The aim of this paper is to provide a wide-ranging review of the survey found able on wavelet-based image processing applications approaches. It will be beneficial for scholars to execute effective image processing applications approaches

    Protecting Ownership Rights of Videos Against Digital Piracy: An Efficient Digital Watermarking Scheme

    Get PDF
    Violation of one’s intellectual ownership rights by the others is a common problem which entertainment industry frequently faces now-a-days. Sharing of information over social media platforms such as Instagram, WhatsApp and twitter without giving credit the owner causes huge financial losses to the owner and hence needs an immediate attention. Digital watermarking is a promising technique to protect owners’ right against digital piracy. Most of the state-of-the-art techniques does not provides adequate level of resilience against majority of video specific attacks and other commonly applied attacks. Therefore, this paper proposes a highly transparent and robust video watermarking solution to protect the owners rights by first convert each video frame into YCbCr color components and then select twenty five strongest speeded-up robust features (SURF) points of the normalized luminance component as points for both watermark embedding and extraction. After applying variety of geometric, simple signal processing and video specific attacks on the watermarked video meticulous analysis is performed using popular metrics which reveals that the proposed scheme possesses high correlation value which makes it superior for practical applications against these attacks. The scheme also proposes a novel three-level impairment scale for subjective analysis which gives stable results to derive correct conclusions

    Contextual biometric watermarking of fingerprint images

    Get PDF
    This research presents contextual digital watermarking techniques using face and demographic text data as multiple watermarks for protecting the evidentiary integrity of fingerprint image. The proposed techniques embed the watermarks into selected regions of fingerprint image in MDCT and DWT domains. A general image watermarking algorithm is developed to investigate the application of MDCT in the elimination of blocking artifacts. The application of MDCT has improved the performance of the watermarking technique compared to DCT. Experimental results show that modifications to fingerprint image are visually imperceptible and maintain the minutiae detail. The integrity of the fingerprint image is verified through high matching score obtained from the AFIS system. There is also a high degree of correlation between the embedded and extracted watermarks. The degree of similarity is computed using pixel-based metrics and human visual system metrics. It is useful for personal identification and establishing digital chain of custody. The results also show that the proposed watermarking technique is resilient to common image modifications that occur during electronic fingerprint transmission

    WM-NET: Robust Deep 3D Watermarking with Limited Data

    Full text link
    The goal of 3D mesh watermarking is to embed the message in 3D meshes that can withstand various attacks imperceptibly and reconstruct the message accurately from watermarked meshes. Traditional methods are less robust against attacks. Recent DNN-based methods either introduce excessive distortions or fail to embed the watermark without the help of texture information. However, embedding the watermark in textures is insecure because replacing the texture image can completely remove the watermark. In this paper, we propose a robust deep 3D mesh watermarking WM-NET, which leverages attention-based convolutions in watermarking tasks to embed binary messages in vertex distributions without texture assistance. Furthermore, our WM-NET exploits the property that simplified meshes inherit similar relations from the original ones, where the relation is the offset vector directed from one vertex to its neighbor. By doing so, our method can be trained on simplified meshes(limited data) but remains effective on large-sized meshes (size adaptable) and unseen categories of meshes (geometry adaptable). Extensive experiments demonstrate our method brings 50% fewer distortions and 10% higher bit accuracy compared to previous work. Our watermark WM-NET is robust against various mesh attacks, e.g. Gauss, rotation, translation, scaling, and cropping

    Tampering with a watermarking-based image authentication scheme

    Get PDF
    We analyse a recent image authentication scheme designed by Chang et al. [A watermarking-based image ownership and tampering authentication scheme, Pattern Recognition Lett. 27 (5) (2006) 439–446] whose first step is based on a watermarking scheme of Maniccam and Bourbakis [Lossless compression and information hiding in images, Pattern Recognition 37 (3) (2004) 475–486]. We show how the Chang et al. scheme still allows pixels to be tampered, and furthermore discuss why its ownership cannot be uniquely binding. Our results indicate that the scheme does not achieve its designed objectives of tamper detection and image ownership

    Security issues on digital watermarking algorithms

    Get PDF
    This paper gives a general introduction to the digital watermarking procedures and their security aspects. The first issue is to clarify unifying and differentiating properties of steganography and watermarking. Then the most important aspects of digital watermarking are reviewed by studying application, requirement and design problems. We put emphasis on the importance of digital watermark as an effective technology to protect intellectual property rights and legitimate use of digital images. In the paper we provide an overview of the most popular digital watermarking methods for still images available today. The watermarking algorithms are divided into two major categories of spatial and transform domains. Because of outstanding robustness and imperceptibility the transform domain algorithms are the mainstream of research. Popular transforms of images include the DFT (Discrete Fourier Transform) ([1, 2, 3, 4, 5]), DCT (Discrete Cosine Transform) ([1, 3, 6, 5]) and DWT (Discrete Wavelet Transform) ([1, 3, 4, 7, 6, 5]). In the paper we emphasize the advantageous features of DWT such as local time-frequency and multi-scale analysis, preserving the quality of host image and ensuring high robustness of watermark. Finally, we present three algorithms which are based on the combination of DWT and some other transformations like DFT ([4]), DCT ([6]) and the Arnold transform ([7, 6]). Finally, we discuss security requirements and possible attacks on the watermarking systems
    • …
    corecore