2,970 research outputs found

    Localized Lasso for High-Dimensional Regression

    Get PDF
    We introduce the localized Lasso, which is suited for learning models that are both interpretable and have a high predictive power in problems with high dimensionality dd and small sample size nn. More specifically, we consider a function defined by local sparse models, one at each data point. We introduce sample-wise network regularization to borrow strength across the models, and sample-wise exclusive group sparsity (a.k.a., â„“1,2\ell_{1,2} norm) to introduce diversity into the choice of feature sets in the local models. The local models are interpretable in terms of similarity of their sparsity patterns. The cost function is convex, and thus has a globally optimal solution. Moreover, we propose a simple yet efficient iterative least-squares based optimization procedure for the localized Lasso, which does not need a tuning parameter, and is guaranteed to converge to a globally optimal solution. The solution is empirically shown to outperform alternatives for both simulated and genomic personalized medicine data

    Distributed Regression in Sensor Networks: Training Distributively with Alternating Projections

    Full text link
    Wireless sensor networks (WSNs) have attracted considerable attention in recent years and motivate a host of new challenges for distributed signal processing. The problem of distributed or decentralized estimation has often been considered in the context of parametric models. However, the success of parametric methods is limited by the appropriateness of the strong statistical assumptions made by the models. In this paper, a more flexible nonparametric model for distributed regression is considered that is applicable in a variety of WSN applications including field estimation. Here, starting with the standard regularized kernel least-squares estimator, a message-passing algorithm for distributed estimation in WSNs is derived. The algorithm can be viewed as an instantiation of the successive orthogonal projection (SOP) algorithm. Various practical aspects of the algorithm are discussed and several numerical simulations validate the potential of the approach.Comment: To appear in the Proceedings of the SPIE Conference on Advanced Signal Processing Algorithms, Architectures and Implementations XV, San Diego, CA, July 31 - August 4, 200

    Geometric deep learning: going beyond Euclidean data

    Get PDF
    Many scientific fields study data with an underlying structure that is a non-Euclidean space. Some examples include social networks in computational social sciences, sensor networks in communications, functional networks in brain imaging, regulatory networks in genetics, and meshed surfaces in computer graphics. In many applications, such geometric data are large and complex (in the case of social networks, on the scale of billions), and are natural targets for machine learning techniques. In particular, we would like to use deep neural networks, which have recently proven to be powerful tools for a broad range of problems from computer vision, natural language processing, and audio analysis. However, these tools have been most successful on data with an underlying Euclidean or grid-like structure, and in cases where the invariances of these structures are built into networks used to model them. Geometric deep learning is an umbrella term for emerging techniques attempting to generalize (structured) deep neural models to non-Euclidean domains such as graphs and manifolds. The purpose of this paper is to overview different examples of geometric deep learning problems and present available solutions, key difficulties, applications, and future research directions in this nascent field

    Multiclass latent locally linear support vector machines

    Get PDF
    Kernelized Support Vector Machines (SVM) have gained the status of off-the-shelf classifiers, able to deliver state of the art performance on almost any problem. Still, their practical use is constrained by their computational and memory complexity, which grows super-linearly with the number of training samples. In order to retain the low training and testing complexity of linear classifiers and the exibility of non linear ones, a growing, promising alternative is represented by methods that learn non-linear classifiers through local combinations of linear ones. In this paper we propose a new multi class local classifier, based on a latent SVM formulation. The proposed classifier makes use of a set of linear models that are linearly combined using sample and class specific weights. Thanks to the latent formulation, the combination coefficients are modeled as latent variables. We allow soft combinations and we provide a closed-form solution for their estimation, resulting in an efficient prediction rule. This novel formulation allows to learn in a principled way the sample specific weights and the linear classifiers, in a unique optimization problem, using a CCCP optimization procedure. Extensive experiments on ten standard UCI machine learning datasets, one large binary dataset, three character and digit recognition databases, and a visual place categorization dataset show the power of the proposed approach

    Doctor of Philosophy

    Get PDF
    dissertationThe contributions in the area of kernelized learning techniques have expanded beyond a few basic kernel functions to general kernel functions that could be learned along with the rest of a statistical learning model. This dissertation aims to explore various directions in \emph{kernel learning}, a setting where we can learn not only a model, but also glean information about the geometry of the data from which we learn, by learning a positive definite (p.d.) kernel. Throughout, we can exploit several properties of kernels that relate to their \emph{geometry} -- a facet that is often overlooked. We revisit some of the necessary mathematical background required to understand kernel learning in context, such as reproducing kernel Hilbert spaces (RKHSs), the reproducing property, the representer theorem, etc. We then cover kernelized learning with support vector machines (SVMs), multiple kernel learning (MKL), and localized kernel learning (LKL). We move on to Bochner's theorem, a tool vital to one of the kernel learning areas we explore. The main portion of the thesis is divided into two parts: (1) kernel learning with SVMs, a.k.a. MKL, and (2) learning based on Bochner's theorem. In the first part, we present efficient, accurate, and scalable algorithms based on the SVM, one that exploits multiplicative weight updates (MWU), and another that exploits local geometry. In the second part, we use Bochner's theorem to incorporate a kernel into a neural network and discover that kernel learning in this fashion, continuous kernel learning (CKL), is superior even to MKL
    • …
    corecore