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Abstract

We introduce the localized Lasso, which
learns models that both are interpretable and
have a high predictive power in problems
with high dimensionality d and small sample
size n. More specifically, we consider a func-
tion defined by local sparse models, one at
each data point. We introduce sample-wise
network regularization to borrow strength
across the models, and sample-wise exclusive
group sparsity (a.k.a., `1,2 norm) to intro-
duce diversity into the choice of feature sets
in the local models. The local models are
interpretable in terms of similarity of their
sparsity patterns. The cost function is con-
vex, and thus has a globally optimal solution.
Moreover, we propose a simple yet efficient it-
erative least-squares based optimization pro-
cedure for the localized Lasso, which does not
need a tuning parameter, and is guaranteed
to converge to a globally optimal solution.
The solution is empirically shown to outper-
form alternatives for both simulated and ge-
nomic personalized/precision medicine data.

1 Introduction

A common problem in molecular medicine, shared by
many other fields, is to learn predictions from data
consisting of a large number of features (e.g., genes)
and a small number of samples (e.g., drugs or pa-
tients). A key challenge is to tailor or “personalize” the
predictions for each data sample, essentially solving
a multi-task learning problem (Evgeniou and Pontil,
2007; Argyriou et al., 2008) where in each task n = 1.
The features (genes) important for prediction can be
different for different samples (patients or drugs), and
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reporting the important features is a key part of the
data analysis, requiring models that are interpretable
in addition to having high prediction accuracy. That
is, the problem can be regarded as a local feature se-
lection and prediction problem, which would be hard
for existing multi-task learning approaches.

Sparse linear feature selection methods such as Lasso
(Tibshirani, 1996) are useful for large p, small n prob-
lems. Standard feature selection methods select the
same small set of features for all samples, which is too
restrictive for the multi-task type of problems, where
for instance effects of different drugs may be based
on different features, and dimensionality needs to be
minimized due to the very small sample size.

Recently, the network Lasso (Hallac et al., 2015a)
method has been proposed for learning local functions
f(xi;wi), i = 1, . . . , n, by using network (graph) infor-
mation between samples. In network Lasso, a group
regularizer is introduced to the difference of the coeffi-
cient vectors between linked coefficients (i.e., wi−wj),
making them similar. We can use this regularizer to
make the local models borrow strength from linked
models. In the network Lasso, sparsity has so far been
used only for making the coefficient vectors similar in-
stead of for feature selection, resulting in dense models.

We propose a sparse variant of the network Lasso,
called the localized Lasso, which helps to choose in-
terpretable features for each sample. More specifi-
cally, we propose to incorporate the sample-wise ex-
clusive regularizer into the network Lasso framework.
By imposing the network regularizer, we can borrow
strength between samples neighboring in the graph,
up to clustering or “stratifying” the samples accord-
ing to how the predictions are made. Furthermore,
by imposing a sample-wise exclusive group regularizer,
each learned model is made sparse but the support re-
mains non-empty, in contrast to what could happen
with naive regularization. As a result, the sparsity pat-
tern and the weights become similar for neighboring
models. We propose an efficient iterative least squares
algorithm and show that the algorithm will obtain a
globally optimal solution. Through experiments on
synthetic and real-world datasets, we show that the
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proposed localized Lasso outperforms state-of-the-art
methods even with a smaller number of features.

Contribution:

• We propose a convex local feature selection and
prediction method. Specifically, we combine the
exclusive regularizer and network regularizer to
produce a locally defined model that gives accu-
rate and interpretable predictions.

• We propose an efficient iterative least squares
based optimization procedure, which does not
need a tuning parameter and is guaranteed to con-
verge to a globally optimal solution.

2 Proposed method

In this section, we first formulate the problem and then
introduce the localized Lasso.

2.1 Problem Formulation

Let us denote an input vector by x =
[x(1), . . . , x(d)]> ∈ Rd and the corresponding output
value y ∈ R. The set of samples {(xi, yi)}ni=1 has
been drawn i.i.d. from a joint probability density
p(x, y). We further assume a graph R ∈ Rn×n, where
[R]i,j = rij ≥ 0 is the coefficient that represents
the relatedness between the sample pair (xi, yi) and
(xj , yj). In this paper, we assume that R is undirected
(i.e., R = R>) and the diagonal elements of R are
zero (i.e., r11 = r22 = . . . = rnn = 0).

The goal in this paper is to select multiple sets of fea-
tures such that each set of features is locally associated
with an individual data point or a cluster, from the
training input-output samples and the graph informa-
tion R. In particular, we aim to learn a model with
an interpretable sparsity pattern in the features.

2.2 Model

We employ the following model for each sample i:

yi = w>i xi + ei, (1)

where ei follows a normal distribution N(0, σ2). Here
wi ∈ Rd contains the regression coefficients for sample
xi and > denotes the transpose. Note that in regres-
sion problems the weight vectors are typically assumed
to be equal, w = w1 = . . . = wn. Since we cannot as-
sume the models to be based on the same features, and
we want to interpret the support of the model for each
sample, we use local models.

Since the number of unknown variables in Eq. (1) is the
same as the number of observed variables, we need to

regularize, for which we propose to use network Lasso
type of regularization (Hallac et al., 2015a):

ρ(W ;R, λ1, λ2)=λ1

n∑
i,j=1

rij‖wi −wj‖2+λ2

n∑
i=1

‖wi‖21.

Here λ1 ≥ 0 and λ2 ≥ 0 are the regularization param-
eters. By imposing the network regularization, we reg-
ularize the model parameters wi and wj to be similar
if rij > 0. If λ1 is large, we will effectively cluster the
samples according to how similar the wis are, that is,
according to the prediction criteria in the local models.
More specifically, when ‖wi −wj‖2 is small (possibly
zero), we can regard the i-th sample and j-th sample
to belong to the same cluster. Moreover, outliers tend
to form their own clusters, and thus, we can also de-
tect outliers in addition to normal clusters; this would
help in interpreting data.

The second regularization term is the `1,2 regularizer
(a.k.a., exclusive regularizer) (Kowalski, 2009; Zhou
et al., 2010; Kong et al., 2014). By imposing the `1,2
regularizer, we can select a small number of elements
within each wi. Note that we regard each parame-
ter vector wi as a group (in total n groups), and are
not treating each dimension as a group. Thanks to
the square of `1 norm over the weight vector wi, the
wi remains non-zero (i.e., wi 6= 0). Similarities and
differences in the sparsity patterns of the wi are then
easily interpretable, more easily than in dense vectors.
Note that while simply imposing the `1 regularizer for
all weights would induce sparsity too, for the heavy
regularization required due to the small sample size,
many of the wi would be shrunk to zero. See Figure
1 for an example.

Our proposed regularizer can be seen as a (non-trivial)
extension of network regularization (Hallac et al.,
2015a), and hence it could be solved by a general alter-
nating direction method of multipliers (ADMM) based
solver. However, ADMM requires a tuning parameter
for convergence (Nishihara et al., 2015). In this pa-
per, we propose a simple yet effective iterative least-
squares based optimization procedure, which does not
need any tuning parameters, and is guaranteed to con-
verge to a globally optimal solution.

2.3 Optimization problem

The optimization problem of the localized lasso1 can
be written as

min
W

J(W )=

n∑
i=1

(yi −w>i xi)
2+ρ(W ;R, λ1, λ2), (2)

1Code available at http://www.makotoyamada-ml.com/
localizedlasso.html
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Algorithm 1 Iterative Least-Squares Algorithm for solving Eq. (2)

Input: Z ∈ Rn×(dn), y ∈ Rn, R ∈ Rn×n, λ1, and λ2.
Output: W ∈ Rn×d.

Set t = 0, Initialize F
(0)
g , F

(0)
e .

repeat

Compute vec(W (t+1)) = (λ1F
(t)
g + λ2F

(t)
e )−1Z>(In + Z(λ1F

(t)
g + λ2F

(t)
e )−1Z>)−1y,

Update F
(t+1)
g , where F

(t+1)
g = Id ⊗C(t+1).

Update F
(t+1)
e , where [F

(t+1)
e ]`,` =

∑n
k=1

Ik,`‖w(t+1)
k ‖1

[vec(|W (t+1)|)]`
.

t = t+ 1.
until Converges

which is convex and hence has a globally optimal solu-
tion. Note that for classification problems the squared
loss can be replaced by the logistic loss.

Let us denote X = [x1, . . . ,xn] = [u1, . . . ,ud]>,
ui ∈ Rn, and W = [w1, . . . ,wn]> ∈ Rn×d. We can
alternatively write the objective function as

J(W ) = ‖y −Zvec(W )‖22 + ρ(W ;R, λ1, λ2), (3)

where Z = [diag(u1) | diag(u2) | . . . | diag(ud)] ∈
Rn×(dn), diag (u) ∈ Rn×n is the diagonal matrix whose
diagonal elements are the u, and vec(·) is the vector-
ization operator such that

vec(W ) = [[W ]1,1, [W ]2,1, . . . [W ]n,1, . . . ,

[W ]1,d, [W ]2,d, . . . [W ]n,d]
>
∈ Rdn.

Here we use the vectorization operator since it makes
it possible to write the loss function and the two reg-
ularization terms as a function of vec(W ), which is
highly helpful for deriving a simple update formula for
W .

Taking the derivative of J(W ) with respect to vec(W )
and using the Propositions 1 and 2 (See Supplemen-
tary material), the optimal solution is given as

vec(W ) = (Z>Z + λ1Fg + λ2Fe)
−1Z>y, (4)

where

Fg = Id ⊗C, [Fe]`,` =

n∑
i=1

Ii,`‖wi‖1
[vec(|W |)]`

,

[C]i,j =

{ ∑n
j′=1

rij′

‖wi−wj′‖2
− rij
‖wi−wj‖2 (i = j)

−rij
‖wi−wj‖2 (i 6= j)

.

Here Fe is diagonal, Id ∈ Rd×d is the identity matrix,
⊗ is the Kronecker product, and the Ii,` ∈ {0, 1} are
group index indicators: Ii,` = 1 if the `-th element
[vec(W )]` belongs to group i (i.e., [vec(W )]` is the
element of wi), otherwise Ii,` = 0.

Since the optimization problem Eq. (2) is convex, the
W is a global optimum to the problem if and only

if Eq. (4) is satisfied. However, the matrices Fg and
Fe are dependent on W and are also unknown. Thus,
we instead optimize the following objective function to
solve Eq. (2):

J̃(W ) = ‖y −Zvec(W )‖22
+ vec(W )>(λ1F

(t)
g + λ2F

(t)
e )vec(W ),

(5)

where F
(t)
g ∈ Rdn×dn is a block diagonal matrix and

F
(t)
e ∈ Rdn×dn is a diagonal matrix whose diagonal

elements are defined as2

F (t)
g =Id ⊗C(t), [Fe]

(t)
`,` =

n∑
i=1

Ii,`‖w(t)
i ‖1

[vec(|W (t)|)]`
,

[C(t)]i,j =


∑n

j′=1

rij′

‖w(t)
i −w

(t)

j′ ‖2
− rij

‖w(t)
i −w

(t)
j ‖2

(i = j)

−rij
‖w(t)

i −w
(t)
j ‖2

(i 6= j)
.

We propose to use the iterative least squares approach

to optimize Eq. (5). With given F
(t)
g and F

(t)
e , the

optimal solution of W is obtained by solving ∂J̃(W )
∂W =

0. The W is estimated as

vec(W (t+1))=H(t)−1Z>(In+ZH(t)−1Z>)−1y, (6)

where H(t) = λ1F
(t)
g + λ2F

(t)
e , F

(t)
g is block diagonal

and F
(t)
e diagonal. Here, we employ the Woodbury for-

mula (Petersen et al., 2008). After we obtain W (t+1),

we update F
(t+1)
g and F

(t+1)
e . We continue this two-

step procedure until convergence. The algorithm is
summarized in Algorithm 1.

Predicting for new test sample: For predicting on
test sample x, we use the estimated local models ŵk

2When wi − wj = 0, then Fg is the subgradient of∑n
i,j=1 rij‖wi − wj‖2. Also, Fe is the subgradient of∑n
i=1 ‖wi‖21 when [vec(|W |)‖` = 0. However, we cannot

set elements of Fg to 0 (i.e., when wi − wj = 0) or the
element of [Fe]`,` = 0 (i.e., when [vec(|W |)‖` = 0), oth-
erwise the Algorithm 1 cannot be guaranteed to converge.
To deal with this issue, we can use

∑n
i,j=1 rij‖wi−wj +ε‖2

and
∑n

i=1 ‖wi + ε‖21 (ε > 0) instead (Kong et al., 2014; Nie
et al., 2010).
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Algorithm 2 Iterative Least-Squares Algorithm for
solving Eq. (7)

Input: x, r′ ∈ Rn, and Ŵ ∈ Rd×n.
Output: ŷ ∈ R and ŵ ∈ Rd.
Set t = 0, Initialize fg ∈ Rn.
repeat

Compute w(t+1) = 1

1>
n f

(t)
g

Ŵf
(t)
g .

Update f
(t+1)
g , where [f

(t+1)
g ]i = [r′]i

2‖ŵi−w(t+1)‖2
.

t = t+ 1.
until Converges
ŷ = ŵ>x.

which are linked to the input x. More specifically, we
solve the Weber problem (Hallac et al., 2015a):

min
w

n∑
i=1

r′i‖w − ŵi‖2, (7)

where r′i ≥ 0 is the link information between the test
sample and the training sample xi. Since this prob-
lem is convex, we can solve it efficiently by an iterative
update formula (see Algorithm 2). If there is no link
information available, we simply average all ŵis to es-
timate ŵ, and then predict as ŷ = ŵ>x.

2.4 Convergence analysis

Next, we prove the convergence of the algorithm.

Theorem 1 The Algorithm 1 will monotonically de-
crease the objective function Eq. (2) in each iteration,
and converge to the global optimum of the problem.

Proof: Under the updating rule of Eq. (6), we have
the following inequality using Lemma 4 and Lemma 8
(See Supplementary material):

J(W (t+1))− J(W (t)) ≤ J̃(W (t+1))− J̃(W (t)) ≤ 0.

That is, the Algorithm 1 will monotonically decrease

the objective function of Eq. (2). At convergence, F
(t)
g

and F
(t)
e will satisfy Eq. (4). Since the optimization

problem Eq. (2) is convex, satisfying Eq. (4) means
that W is a global optimum to the problem in Eq. (2).
Thus, the Algorithm 1 will converge to the global opti-
mum of the problem Eq. (2). �

2.5 Sparse convex clustering

The proposed sparse regularization can be applied to
convex clustering problems (Pelckmans et al., 2005;
Hocking et al., 2011; Wang et al., 2016) by changing
the objective function. The optimization problem is

then

min
W

J(W ) = ‖X> −W ‖2F + ρ(W ;R, λ1, λ2), (8)

where

rij =

{
δij exp

(
−‖xi−xj‖2

2

)
(i 6= j)

0 Otherwise

is the Gaussian kernel. Here δij = 1 if xj is included
in the K-th neighbors of xi, otherwise δij = 0. Note
that we define the neighborhood such that the R is al-
ways properly defined. The original convex clustering
methods do not include the exclusive group sparsity
regularization, and thus, the learned matrix W tends
to be dense. Adding the sparsity makes the clusters
more easily interpretable, even as biclusters or sub-
space clusters, still retaining convexity.

3 Related work

In this section, we review the existing regression meth-
ods and address the difference from the proposed
method.

Sparsity-based global feature selection methods such
as Lasso (Tibshirani, 1996) are useful for selecting
genes. However, in personalized/precision medicine se-
tups, we ultimately want to personalize the models for
each patient (or drug), instead of assuming the same
set of features (e.g., genes) for each.

The proposed method is also related to the fused Lasso
(Tibshirani et al., 2005), which is widely used for ana-
lyzing spatial signals including brain signals (Xin et al.,
2014; Ren et al., 2015). Both the fused Lasso and its
generalizations (Takeuchi et al., 2015) operate on dif-
ferences of scalars and are not suited for the differences
of vectors we would need.

The generalized group fused Lasso (Pelckmans et al.,
2005; Hocking et al., 2011) is a multivariate extension
of the generalized fused Lasso, used for convex clus-
tering problems. The key difference between the origi-
nal convex clustering methods and our work is the ex-
clusive regularization term, which enables us to select
features in addition to clustering samples. Recently,
a sparse convex clustering method has been proposed
(Wang et al., 2016); its combination of feature-wise
group regularization and sample-wise group fused reg-
ularization tends to select global features important for
all samples, whereas we can choose features specific to
each cluster and sample.

The network Lasso (Hallac et al., 2015a) is a gen-
eral framework for solving regression problems having
graph information, and our task can be categorized as
a network Lasso problem. To our knowledge, ours is
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the first work to introduce feature-wise sparsity in the
network Lasso problem. The additional central insight
we bring is that by using the `1,2 regularizer instead of
the `1, we get non-obvious effects resulting in learning
of different sparsity patterns for each local model, still
borrowing strength according to the network.

Multi-task learning (Obozinski et al., 2006; Evgeniou
and Pontil, 2007; Argyriou et al., 2008; Zhou et al.,
2010; Sugiyama et al., 2014) is also relevant but does
not solve our problem setup, since multi-task learning
approaches assume the tasks (or clusters) to be known
a priori. In contrast, in the localized lasso problem the
clusters need to be found in addition to selecting fea-
tures. It would be possible to first cluster based on the
similarities in R and then apply multi-task learning
for the resulting clusters. Convex multi-task learning
methods which share inter-task similarity through low-
rankness exist (Ando and Zhang, 2005; Jacob et al.,
2009), but have not been designed to select a small
number of features for each task. Recently, FOR-
MULA, which both shares inter-task information using
low-rankness, and enforces the low-rank matrices to
be sparse, has been proposed (Xu et al., 2015), and we
compare with it experimentally. However, FORMULA
is a non-convex method, and it tends to perform poorly
unless initialized very carefully. In particular in per-
sonalized medicine problems, since the data tend to be
high-dimensional (i.e., the number of samples is much
smaller than that of features), it tends to get trapped
to poor local optima. Since our proposed method is
convex and can effectively handle the joint feature se-
lection and clustering problem, it is directly suited to
such problem setups.

Local learning algorithms including local metric learn-
ing (Wang et al., 2012; Park et al., 2015) are also re-
lated to our work. By incorporating locality into met-
ric learning, the embedding accuracy can be improved.
However, existing local learning algorithms focus on
learning local metrics, and not on local feature selec-
tion. Since we want to interpret the sets of features in
local models, the current local metric algorithms are
not sufficient for our task.

4 Experiments

In this section, we first illustrate our proposed method
on synthetic data and then compare it with existing
methods using a real-world dataset.

We compared our proposed method with Lasso (Tib-
shirani, 1996), Elastic Net (Zou and Hastie, 2005),
FORMULA (Xu et al., 2015), and Network Lasso (Hal-
lac et al., 2015a,b). For Lasso, Elastic Net, and FOR-
MULA, we used the publicly available packages. For
the network Lasso implementation, we set the regu-

larization parameter to λ2 = 0 in the localized Lasso.
For supervised regression problems, all tuning param-
eters are determined by 3-fold nested cross validation.
The experiments were run on a 3GHz AMD Opteron
Processor with 48GB of RAM.

4.1 Synthetic experiments (high-dimensional
regression)

We illustrate the behavior of the proposed method us-
ing a synthetic high-dimensional dataset.

We first generated the input variables as xk,i ∼
Unif(−1, 1), k = 1, . . . , 10, i = 1, . . . , 30. Then, we gen-
erated the corresponding output as

yi =

 5x1,i + x2,i − x3,i + 0.1ei (i = 1, . . . , 10)
x2,i − 5x3,i + x4,i + 0.1ei (i = 11 . . . , 20)
0.5x4,i − 0.5x5,i + 0.1ei (i = 21 . . . 30)

, (9)

where xk,i is the value of the k-th feature in the i-th
sample and ei ∼ N(0, 1). In addition to the input-
output pairs, we also randomly generated the link in-
formation matrix R ∈ {0, 1}30×30. In the link infor-
mation matrix, only 40% of true links are observed.We
experimentally set the regularization parameter for the
proposed method to λ1 = 5 and λ2 = {0.01, 1, 10}.
For the network Lasso, we used λ1 = 5. Moreover,
we compared the proposed method with the network
Lasso + `1 regularizer, in which we used λ1 = 5 and
λ2 = {0.05, 0.5}, where λ2 is the regularization param-
eter for the `1 regularizer.

Figures 1(a)-(f) show the true coefficient pattern and
the results of the learned coefficient matrices W by
using the localized Lasso, the network Lasso, and3 the
network Lasso + `1. As can be seen, most of the unre-
lated coefficients of the proposed method are shrunk to
zero. On the other hand, for the network Lasso, many
unrelated coefficients take non-zero values. Thus, by
incorporating the exclusive regularization in addition
to the network regularization, we can learn sparse pat-
terns in high-dimensional regression problems. More-
over, by setting the `1,2 regularizer term to be stronger,
we can obtain a sparser pattern within the wi. In con-
trast, Network Lasso + `1, which produces a similar
pattern when the regularization is weak (Fig. 1(e)),
shrinks many local models to zero if the regularization
parameter λ2 is large (Fig. 1(f)). This shows that the
network Lasso + `1 is sensitive to the setting of the
regularization parameter. Moreover, since we want to
interpret features for each sample (or model), the `1,2
norm is more suited than `1 for our tasks.

Figure 2 (a) shows the convergence of the proposed
method. The objective score converges within 30 it-

3Note that the combination of the network lasso and `1
is also new.
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(a) True pattern.
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(b) Network Lasso.
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(c) Proposed (λ2 = 0.01).
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(d) Proposed (λ2 = 0.05).
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(e) Network Lasso + `1 (λ2 = 0.1).
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(f) Network Lasso + `1 (λ2 = 0.3).

Figure 1: The learned coefficient matrix for the synthetic data for the different methods. Proposed = Localized
Lasso. For Network Lasso + `1, we use the `1 regularizer instead of `1,2 and λ2 ≥ 0 is the regularization
parameter for the `1 term.
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Figure 2: (a): Objective score (Eq (2)) as a function
of iteration (d = 105). (b): Computation time of the
proposed method. We fixed the number of samples
to n = 100 and the number of iterations to 10, and
computed the results for d = 10, 102, 103, and 104.

erations for high-dimensional data (d = 105), without
requiring tuning of step-size parameters as ADMM op-
timization would. Figure 2 (b) shows the computation
time of the proposed method (implemented in MAT-
LAB; the alternatives would perform similarly). As
can be seen, the proposed method scales linearly with
respect to the dimension.

4.2 Prediction in toxicogenomics
(high-dimensional regression)

We evaluate our proposed method on the task of pre-
dicting toxicity of drugs on three cancer cell lines,

based on gene expression measurements. The Gene
Expression data includes the differential expression
of 1106 genes in three different cancer types, for a

collection of 53 drugs (i.e., Xl = [x
(l)
1 , . . . ,x

(l)
53 ] ∈

R1106×53, l = 1, 2, 3). The learning data on Toxicity
to be predicted contains three dose-dependent toxicity
profiles of the corresponding 53 drugs over the three

cancers (i.e., Yl = [y
(l)
1 , . . . ,y

(l)
53 ] ∈ R3×53, l = 1, 2, 3).

The gene expression data of the three cancers (Blood,
Breast and Prostate) comes from the Connectivity
Map (Lamb et al., 2006) and was processed to obtain
treatment vs. control differential expression. The tox-
icity screening data from the NCI-60 database (Shoe-
maker, 2006), summarizes the toxicity of drug treat-
ments in three variables, GI50, LC50 and TGI, repre-
senting the 50% growth inhibition, 50% lethal concen-
tration, and total growth inhibition levels. The data
were confirmed to represent dose-dependent toxicity
profiles for the doses used in the corresponding gene
expression dataset.

In this experiment, we randomly split the data into
training and test sets. The training set consisted of
48 drugs and the test set of 5 drugs. Moreover, we
introduced a bias term in the proposed method (i.e.,
[x> 1]> ∈ Rd+1), and regularized the entire wis in the
network regularization term, and only vi ∈ Rd−1 in
the `1,2 regularization term; here wi = [v>i 1]>. We
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Table 1: Test root MSE on toxicogenomics data. The best method under sigfinicance level 5% (Wilcoxon
signed-rank test) is reported in bold.

Blood Breast Prostate Average
GI50 TGI LC50 GI50 TGI LC50 GI50 TGI LC50

Localized Lasso 1.030 0.622 0.529 1.129 0.627 0.562 1.297 0.518 0.539 0.760
Network Lasso 1.096 0.918 0.921 1.368 0.821 1.065 1.475 0.711 0.690 1.007
FORMULA 1.503 1.179 1.253 1.367 1.109 1.197 1.376 1.121 1.129 1.248
Lasso 1.201 1.006 0.514 1.435 0.879 0.560 1.455 0.763 0.523 0.926
Elastic Net 1.129 0.875 0.514 1.164 0.800 0.560 1.130 0.633 0.505 0.812
Kernel Regression 1.070 0.808 0.623 1.165 0.677 0.688 1.466 0.551 0.509 0.839

Table 2: The number of selected features (genes) on toxicogenomics data. For Localized Lasso, Network Lasso,
FORMULA, and Elastic Net, we select features by checking ‖W·,i‖2 > 10−5, where W·,i ∈ Rn is the i-th column
of W .

Blood Breast Prostate Average
GI50 TGI LC50 GI50 TGI LC50 GI50 TGI LC50

Localized Lasso 32.7 33.4 92.5 92.6 125.9 58.2 35.1 53.9 43.4 63.4
Network Lasso 1039.6 1047.3 1052.2 1054.6 1051.5 1053.3 1060.5 1052.9 1053.1 1061.0
FORMULA 576.6 445.6 550.5 914.3 936.7 776.3 942.0 712.2 633.6 720.8
Lasso 29.6 12.0 1.0 12.0 1.9 1.0 12.5 4.4 3.8 8.7
Elastic Net 310.8 91.4 39.2 124.9 77.2 1.0 116.6 87.9 98.9 105.3

computed the graph information using the input X as

R=
S>+S

2
, [S]ij =

{
1 xj is a 5-NN of xi

0 Otherwise
.

We repeated the experiments 20 times and report the
average test RMSE scores in Table 1. We observed
that the proposed localized Lasso outperforms state-
of-the-art linear methods. Moreover, the proposed
method also outperformed the nonlinear kernel regres-
sion with Gaussian kernel, which has high predictive
power but cannot identify features. The kernel width
of Gaussian kernel was tuned by cross-validation.

In Table 2, we report the number of selected features
in each method. It is clear that the number of selected
features in the proposed method is much smaller than
that of the network Lasso. In some cases Lasso and
Elastic net selected only one feature. This means that
the features were shrunken to zero and only bias term
remained. In summary, the proposed method is suited
for producing interpretable sparse models in addition
to having high predictive power.

4.3 Synthetic experiment (clustering)

Here, we illustrate the behavior of the proposed
method for convex clustering using a synthetic dataset.

We generated the input variables as

xij ∼


Unif(−3,−1) (i = 1, j = 1, . . . , 30)
Unif(1, 3) (i = 2, j = 31, . . . , 60)
Unif(2, 4) (i = 3, j = 61, . . . 90)
Unif(−1, 1) Otherwise

, (10)

where xk,i is the value of the k-th feature in the i-th
sample. In this experiment, we compare our proposed
method with the network lasso (i.e., λ2 = 0) and sparse
convex clustering (Wang et al., 2016), which employs
the feature-wise group regularization (i.e., `2,1-norm)
in addition to the network regularization.

Figure 3 shows the learned coefficient matrices. As
can be seen, the weight matrix of the network lasso
is non-sparse. In contrast, it is possible to obtain the
correct sparsity pattern using the proposed regular-
ization. The sparse convex clustering method (Wang
et al., 2016) can select the correct global set of fea-
tures, but is less accurate in selecting the local feature
sets than the proposed regularization.

4.4 Benchmark experiments (clustering)

We evaluated the proposed sparse convex clustering
method on three benchmark datasets. We compared
it with the convex clustering (Pelckmans et al., 2005;
Hocking et al., 2011) and the sparse convex clustering
+ `2,1 (Wang et al., 2016) algorithms. For all methods,
we first ran the clustering algorithm which produced

an estimate Ŵ . Then, we applied an agglomerative

clustering algorithm to threshold the Ŵ into a disjoint
set of cluster indices. The clustering performance was
evaluated by the adjusted Rand index (ARI) (Hubert
and Arabie, 1985) between the estimated class labels
and true labels. We ran each clustering method by
multiple regularization parameter values and report
the best ARI score. For all methods, the candidate
lists of λ1 and λ2 were {0, 0.01, 0.1, 1, 2, . . . , 15} and
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(a) Input data (X).
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(b) Network Lasso.
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(c) Proposed (λ1 = 5, λ2 = 0.5).
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(d) Proposed (λ1 = 5, λ2 = 5).
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(e) Network Lasso + `2,1
(λ1 = 5, λ2 = 1).
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(f) Network Lasso + `2,1
(λ1 = 5, λ2 = 5).

Figure 3: The learned coefficient matrix for the clustering data. For the Network Lasso + `2,1, feature-wise
group regularizer is used instead of `1,2 and λ2 ≥ 0 is the regularization parameter for the `2,1 term. (a): The
input matrix X. (b): Network Lasso (λ1 = 5, λ2 = 0). (c): Localized Lasso (λ1 = 5, λ2 = 0.5). (d): Localized
Lasso (λ1 = 5, λ2 = 10). (e): Network Lasso + `2,1 (λ1 = 5, λ2 = 1). (f): Network Lasso + `2,1 (λ1 = 5, λ2 = 5).
Note that the Network Lasso + `2,1 is equivalent to sparse convex clustering (Wang et al., 2016).

Table 3: Experimental results (ARI) on real-world datasets. Larger ARI is better. K is the number of true
clusters.

Data d n K Localized Lasso Sparse Conv. Clust. Conv. Clust.
LUNG 3312 203 5 0.6316 (λ1 = 15, λ2 = 1) 0.5692 (λ1 = 9, λ2 = 8) 0.3715 (λ1 = 10)
COIL20 1024 1440 20 0.8048 (λ1 = 8, λ2 = 0.1) 0.7795 (λ1 = 15, λ2 = 13) 0.6991 (λ1 = 15)
Lymphoma 4026 96 9 0.6174 (λ1 = 5, λ2 = 0.01) 0.2673 (λ1 = 9, λ2 = 0) 0.2673 (λ1 = 9)

{0, 0.01, 0.1, 1, 2, . . . , 15}, respectively.

Table 3 shows the ARI results. As can be seen, the pro-
posed method outperforms the existing state-of-the-
art convex clustering methods for high-dimensional
clustering problems. In other words, inducing the
sample-wise exclusive sparsity is crucial to obtaining
better clustering results.

5 Conclusion

In this paper, we proposed the localized Lasso method,
which can produce sparse interpretable local models
for high-dimensional problems. We proposed a sim-
ple yet efficient optimization approach by introduc-
ing structured sparsity: sample-wise network regular-
izer and sample-wise exclusive sparsity. Thanks to the

structured sparsity, the proposed method had better
regression performance with a smaller number of fea-
tures than the alternatives. Moreover, the sparsity
pattern in the learned models aids interpretation. We
showed that the proposed method compares favorably
with state-of-the-art methods on simulated data and
molecular biological personalized medicine data.
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