
KERNELS AND GEOMETRY OF MACHINE LEARNING

by

John Moeller

A dissertation submitted to the faculty of
The University of Utah

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Computing

School of Computing

The University of Utah

May 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276263881?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Copyright c© John Moeller 2017

All Rights Reserved

The University of Utah Graduate School

STATEMENT OF DISSERTATION APPROVAL

The dissertation of John Moeller

has been approved by the following supervisory committee members:

Suresh Venkatasubramanian , Chair(s) 26 Aug 2016
Date Approved

Hal Daumé III , Member 27 Sep 2016
Date Approved

P. Thomas Fletcher , Member 11 Sep 2016
Date Approved

Jeffrey Phillips , Member 29 Aug 2016
Date Approved

Vivek Srikumar , Member 5 Sep 2016
Date Approved

by Ross Whitaker , Chair/Dean of

the Department/College/School of Computing

and by David B. Kieda , Dean of The Graduate School.

ABSTRACT

The contributions in the area of kernelized learning techniques have expanded beyond

a few basic kernel functions to general kernel functions that could be learned along with

the rest of a statistical learning model. This dissertation aims to explore various directions

in kernel learning, a setting where we can learn not only a model, but also glean information

about the geometry of the data from which we learn, by learning a positive-definite (p.d.)

kernel. Throughout, we can exploit several properties of kernels that relate to their geome-

try – a facet that is often overlooked.

We revisit some of the necessary mathematical background required to understand

kernel learning in context, such as reproducing kernel Hilbert spaces (RKHSs), the repro-

ducing property, the representer theorem, etc. We then cover kernelized learning with

support vector machines (SVMs), multiple kernel learning (MKL), and localized kernel

learning (LKL). We move on to Bochner’s theorem, a tool vital to one of the kernel learning

areas we explore.

The main portion of the thesis is divided into two parts: (1) kernel learning with

SVMs, a.k.a. MKL, and (2) learning based on Bochner’s theorem. In the first part, we

present efficient, accurate, and scalable algorithms based on the SVM, one that exploits

multiplicative weight updates (MWU), and another that exploits local geometry. In the

second part, we use Bochner’s theorem to incorporate a kernel into a neural network and

discover that kernel learning in this fashion, continuous kernel learning (CKL), is superior

even to MKL.

For my wife Aimee Núñez, who has loved and supported me through this whole

disruptive journey. Aimee, I hold nothing but love for you in my heart, and I hope that

I’ve earned your dedication and loyalty.

CONTENTS

ABSTRACT . iii

LIST OF FIGURES . viii

LIST OF TABLES . ix

NOTATION AND SYMBOLS . x

ACKNOWLEDGEMENTS . xi

CHAPTERS

1. INTRODUCTION . 1

1.1 Thesis Statement . 1
1.2 Organization of This Dissertation . 2

2. KERNEL LEARNING . 4

2.1 Convex Optimization . 4
2.2 Support Vector Machines . 5

2.2.1 Modeling the Geometry of SVM . 6
2.3 Kernels and Reproducing Kernel Hilbert Spaces . 7

2.3.1 Using Kernels to Predict . 9
2.3.2 Kernelizing the SVM Dual . 9

2.4 Kernel Learning . 9
2.4.1 Multiple Kernel Learning . 10
2.4.2 Localized Multiple Kernel Learning . 12

2.4.2.1 Localized Multiple Kernel Learning (LMKL) 12
2.4.2.2 Convex LMKL (C-LMKL) . 13
2.4.2.3 Success-Based Locally-Weighted Kernels (SWMKL) 13
2.4.2.4 Sample-Adaptive Multiple Kernel Learning (SAMKL) 14

2.5 Continuous Kernel Learning . 14
2.5.1 Approaches Utilizing Bochner’s Theorem . 14
2.5.2 Infinite-width Networks . 15
2.5.3 Layered Kernels . 16
2.5.4 Neural Networks as Kernels . 16

PART I KERNEL LEARNING IN SVMS . 17

3. MULTIPLICATIVE WEIGHT UPDATES-MULTIPLE KERNEL LEARNING . . . 18

3.1 Introduction . 18
3.2 Our Algorithm . 19

3.2.1 Overview . 20

3.2.2 QCQPs and SDPs . 20
3.2.3 The MMWU Framework . 21
3.2.4 Our Algorithm . 22

3.2.4.1 The Backward Step . 22
3.2.4.1.1 Eigenvalues. 22
3.2.4.1.2 Eigenvectors. 23
3.2.4.1.3 The exponential. 23
3.2.4.1.4 The exponentiation algorithm. 24

3.2.4.2 The Forward Step . 24
3.2.5 Avoiding Binary Search for ω . 26
3.2.6 Extracting the Solution from the MMWU . 27
3.2.7 Putting It All Together . 27

3.2.7.1 Running Time . 28
3.3 Single-Kernel Form . 28

3.3.1 Polytope Distance Problem . 29
3.4 Experiments . 30

3.4.1 Uniform Kernel Weights . 30
3.4.2 LibLinear with Nyström Kernel Approximations 31
3.4.3 Legacy MKL Implementations . 33
3.4.4 Experimental Parameters . 33
3.4.5 Accuracy . 35
3.4.6 Data Scalability . 36
3.4.7 Kernel Scalability . 36
3.4.8 Dynamic Kernels . 37

3.5 How to Shave a Factor of 1/δ from Our Bound . 38
3.5.1 Replacing Parts of the Algorithm . 38

3.5.1.1 The (`, ρ)∗-bounded ORACLE . 38
3.5.1.2 ε and T . 38
3.5.1.3 M(t) . 38

3.5.2 Proof of Kale [43, Theorem 13] . 39

4. LOCALIZED DECISION-BASED MULTIPLE KERNEL LEARNING 41

4.1 Introduction . 41
4.1.1 Our Contributions . 42

4.2 Background . 43
4.3 A Unified View of Localized Kernel Learning . 43

4.3.1 Localization via Hilbert Subspaces . 43
4.3.1.1 The RKHS of a Localized Kernel . 43
4.3.1.2 Localization . 44

4.3.2 Gating and Optimization . 45
4.3.2.1 LMKL . 45
4.3.2.2 C-LMKL . 45
4.3.2.3 SWMKL . 46
4.3.2.4 SAMKL . 46
4.3.2.5 Global (“classic”) MKL . 46

4.4 LD-MKL: A New Algorithm for Localized Kernel Learning 46
4.5 Experiments . 48

4.5.1 Scalability . 48

vi

4.5.2 Datasets . 48
4.5.3 Methodology . 49
4.5.4 Implementations . 49
4.5.5 Evaluating LD-MKL . 50
4.5.6 Scaling . 51

4.5.6.1 Stress-testing . 52
4.5.7 Support Points . 52

PART II DISTRIBUTION-BASED KERNEL LEARNING . 54

5. CONTINUOUS KERNEL LEARNING . 55

5.1 Introduction . 55
5.1.1 Technical Overview . 56

5.2 Continuous Kernel Learning . 57
5.2.1 Bochner’s Theorem . 57
5.2.2 Fourier Embeddings . 57

5.2.2.1 Our Approach . 58
5.2.3 Generalization Bounds in Fourier Embeddings . 59
5.2.4 Regularization . 62

5.3 From an Embedding to a Feed-forward Network . 63
5.4 Experiments . 64

5.4.1 MKL vs. CKL on Small Datasets . 64
5.4.1.1 Datasets . 64
5.4.1.2 Experimental Procedure, MKL . 65
5.4.1.3 Experimental Procedure, CKL . 65
5.4.1.4 Results . 66

5.4.2 MKL vs. CKL on Million Song Datasets . 66
5.4.2.1 Results . 68

5.4.3 MKL vs. CKL on Images . 68
5.4.3.1 Preprocessing . 68
5.4.3.2 Feature Extraction . 68
5.4.3.3 CIFAR10 with MKL . 69
5.4.3.4 CIFAR10 with CKL . 69
5.4.3.5 Experimental Procedure . 70
5.4.3.6 Results . 70
5.4.3.7 CIFAR10 with Two Layer ConvNets . 70

6. CONCLUSION . 71

6.1 Summary of Contributions and Future Directions . 71
6.1.1 Multiplicative Weight Updates-MKL . 71
6.1.2 Localized Kernel Learning . 71
6.1.3 Continuous Kernel Learning . 72

DISSEMINATION OF THIS WORK . 73

REFERENCES . 74

vii

LIST OF FIGURES

2.1 Illustration of primal-dual relationship for classification. 7

3.1 Median misclassification rate for small datasets. 31

3.2 CodRna (n = 59535, d = 8) with 12 kernels. 32

3.3 Adult (n = 48842, d = 123) with m = 12 kernels . 33

3.4 Web (n = 64700, d = 300) with m = 12 kernels . 34

3.5 Time per kernel vs. data size for small and medium datasets (log-log). 35

4.1 Illustration of the difference between global (left) and local (right) multiple
kernel learning. In each example, the classifier is built from two kernels, one
quadratic and one Gaussian. Points from the two classes are colored blue and
red (with transparency as a hint towards density). The decision boundary is
marked in green and the margin boundaries are in the appropriate colors for
the global case. For the local case, the margins of each kernel are plotted
with dotted lines, red for Gaussian and blue for quadratic. Support points
are indicated by black circles around points. Note that the classifier uses a
soft-margin loss and so support points may not be exactly on the margin
boundary. The global version (left) has 118 support points, while the local
version (right) has only 20. 42

4.2 Minimum memory required (assuming double-precision floats) for LibSVM-
based and MWUMKL-based methods. LibSVM-based methods exclude those
that use only LibSVM’s standard kernels, such as LD-MKL, but include those
that construct a new kernel, such as LMKL, C-LMKL, and SWMKL. The
values for n are taken from the “Examples” column from Table 4.1. 52

LIST OF TABLES

3.1 Datasets used in experiments. 30

3.2 MWUMKL with on-the-fly kernel computations. 37

4.1 Datasets for comparison of LMKL, SWMKL, and C-LMKL 49

4.2 Accuracies and running times for various datasets and methods, using Lib-
SVM as the SVM solver. Numbers in parentheses are standard deviations.
For the first four datasets, numbers are averaged over 100 runs. For the last
three larger datasets, numbers are averaged over 20 runs. Values which are
significantly superior to that of other methods are typeset in bold. 50

4.3 Accuracies and running times for various datasets and methods, using MWUMKL
as the SVM solver. Numbers in parentheses are standard deviations. For
the first four datasets, numbers are averaged over 100 runs. For the last
three larger datasets, numbers are averaged over 20 runs. Values which are
significantly superior to that of other methods are typeset in bold. 51

4.4 Numbers of support points computed as a percentage of the total number of
points. Numbers in parentheses are standard deviations over 100 iterations.
Values which are significantly superior to those of other methods are typeset
in bold. 53

5.1 Summary of datasets . 64

5.2 Parameters used in CKL experiments. Note that σ is a hyperparameter of the
model. 66

5.3 Hyperparameters used in CKL experiments. 67

5.4 Mean accuracies (standard deviations) for various datasets on MKL and CKL.
If a mean, minus the standard deviation, is greater than all other means plus
standard deviations in the row, then the mean is bold. Note that for all MSD
tests, the difference is more than three standard deviations. 67

5.5 Accuracy for CIFAR10 on MKL and CKL with convolutional neural network
(CNN). 69

NOTATION AND SYMBOLS

Z The integers
[a..b] {i ∈ Z | a ≤ i ≤ b, a, b ∈ Z}
R The real numbers
R+ {x ∈ R | x ≥ 0}
R++ {x ∈ R | x > 0}
C The complex numbers
Re(z) The real component of z ∈ C

Im(z) The imaginary component of z ∈ C

A×B Cartesian product of two sets A and B
Ad Cartesian product of d many copies of A
Fm×n Set of m× n matrices of elements of field F
x Vector x
x̂ Vector such that ‖x‖x̂ = x
A Matrix A
0m×n, 0n, 0 Zero vector or matrix
1m×n, 1n, 1 All-ones vector or matrix
In, I n× n dentity matrix (just I if dimension is understood from context)
A � 0 A is positive semidefinite
A � B A− B is positive semidefinite
diag(a) The diagonal matrix A such that Aii = ai
A> The transpose of A
tr(A) The trace of A (= ∑i Aii = I •A)
A ◦ B Hadamard (elementwise) product of A and B

(A ◦ B = C such that Cij = AijBij)
A • B = tr(A>B) = ∑i,j AijBij = B •A

‖ · ‖ Norm
〈·, ·〉 Inner product
ReLU(·) Rectified linear function

(ReLU(x) = 0 for x < 0, ReLU(x) = x otherwise)

The softmax operator is a map Rd → (0, 1)d that normalizes the input vector to the
range (0, 1):

softmax(x) =

(
exp xi

∑d
k=1 exp xk

)d

i=1

ACKNOWLEDGEMENTS

First, I would like to recognize my advisor Suresh Venkatasubramanian for his tutelage

these last several years. He has made me laugh about the frustrating parts, kicked me in

the ass when I was slacking, talked me down when I was feeling defeated, and provided

insight into how the process really works. Above all, he has been a fair mentor, backing me

when I needed it and whipping me into shape when I needed it as well. Any PhD student

should feel fortunate to have Suresh as a mentor.

I wouldn’t be here without the rest of my committee: Hal, Tom, Jeff, and Vivek. You

made this possible, so a big thank you from me to you. Thank you to the Scientific Com-

puting Institute (SCI) for allowing us to use their resources for our experiments during

their low utilization periods. Also thank you to the taxpayers of the USA, through the

NSF, for providing me with a livable income and the means to get here. I’d also like to

thank Satyen Kale for his PhD work and his excellent PhD dissertation, which clarified

many aspects of my research.

Thank you to my labmates and classmen, particularly Samira, Protonu, Petey, and

Mina, for laughs, cameraderie, and insight. A special thank you to Nathan Gilbert for

getting me up to Suresh’s lecture in 2008. Thanks to my academic friends Jake, Roni,

Josh, and Steven for good conversation. Thanks to my nonacademic friends Mike, Kirsten,

Jean, Robert, Dean, Dan, and Larry for keeping me grounded in reality. To my coauthors,

Amir, Para, Avishek, Dustin, Sorelle, and Sarath, thank you for the collaboration and

opportunities.

To my sister, Deborah Moeller, thank you for the good conversations, goofy jokes, and

raising the level of discourse. To my mom, Marsha Moeller, thank you for feeding me,

clothing me, protecting me, transporting me, and (sometimes successfully) anticipating my

needs. To my dad, John Moeller, I wouldn’t be earning a PhD were it not for your constant

encouragement and support. Thank you for bringing home that monstrous Tektronix 4052

(I still remember its smell). It opened the door to a whole way of life for me.

CHAPTER 1

INTRODUCTION

Kernels were an important analytical tool before the field of machine learning was ever

conceived. Their contribution to machine learning and other mathematical fields has been

profound, opening the door to efficient and accurate computation of nonlinear models.

Last decade, the contribution of kernels expanded beyond a few basic kernel functions

to general kernel functions that could be learned along with the rest of a model. This

direction continues to bear fruit. This dissertation aims to explore various directions in

kernel learning, a setting where we can learn not only a model, but also glean information

about the geometry of the data we learn, by learning a positive-definite (p.d.) kernel.

1.1 Thesis Statement
Kernels can be employed in a rich variety of ways by exploiting several of their math-

ematical properties. Additionally, because they are intrinsically geometric objects, we can

build rigorous theory around them. Nevertheless, kernel methods suffer from a scaling

problem. We can address this problem in multiple ways:

1. First, applying the right techniques can reduce this impact – we apply a well-regarded

optimization technique and exploit the geometric structure of the problem.

2. Prediction is also a problem with kernel methods, because the cost of prediction

scales linearly in the number of kernel representatives for the prediction function.

Localization mitigates this problem – that is, by focusing a kernel’s effect per-example,

we can reduce the number of kernel representatives. We generalize local kernel learn-

ing methods and isolate the effect that the technique has on representer cardinality.

3. Finally, we can scale kernel learning to the largest datasets by exploiting neural

network technology. Additionally, we show VC-dimension results on this type of

2

hypothesis class. By importing concepts such as sample complexity to (e.g.) deep

learning, we can provide those areas with more tools to analyze them.

1.2 Organization of This Dissertation
Chapter 2 covers varied background material, including convex optimization, support

vector machines (SVMs), kernels, reproducing kernel Hilbert spaces (RKHSs), multiple

kernel learning (MKL), Bochner’s theorem, and feedforward neural networks. This chap-

ter will also cover prior work related to topics covered in this dissertation.

Chapter 3 presents a geometric formulation of the multiple kernel learning (MKL)

problem. We reinterpret the problem of learning kernel weights as searching for a ker-

nel that maximizes the minimum (kernel) distance between two convex polytopes. This

interpretation combined with novel structural insights from our geometric formulation

allows us to reduce the MKL problem to a simple optimization routine that yields provable

convergence as well as quality guarantees. As a result, our method scales efficiently to

much larger datasets than most prior methods can handle. Empirical evaluation on eleven

datasets shows that we are significantly faster and even compare favorably with a uniform

unweighted combination of kernels.

Chapter 4 describes localized kernel learning (LKL) and presents a unified framework

to solve the problem. Most MKL methods seek the combined kernel that performs best

over every training example, sacrificing performance in some areas to seek a global op-

timum. LKL overcomes this limitation by allowing the training algorithm to match a

component kernel to the examples that can exploit it best. Several approaches to the LKL

problem have been explored in the last several years. We unify many of these approaches

under one simple system and describe an algorithm with improved performance. We

also develop enhanced versions of existing algorithms, with an eye on scalability and

performance.

Chapter 5 describes a new approach to kernel learning that establishes connections

between the Fourier-analytic representation of kernels arising out of Bochner’s theorem

and a specific kind of feed-forward network using cosine activations. We analyze the

complexity of this space of hypotheses and demonstrate empirically that our approach

provides scalable kernel learning superior in quality to prior kernel learning approaches.

3

Chapter 6 discusses the contributions of this dissertation, and discusses future work

directions.

CHAPTER 2

KERNEL LEARNING

2.1 Convex Optimization
Convex optimization is useful for machine learning since many machine learning prob-

lems can be expressed as a minimization of a convex function over a convex set.

Definition 1 (Boyd and Vandenberghe [16, sec. 4.2]). A convex optimization problem (or

convex program) is one of the form

min f0(x)

s.t. fi(x) ≤ 0, ∀i ∈ [1..m]

a>j x = bj, ∀j ∈ [1..p],

where { f0 . . . fm} are convex functions.

Several categories of optimization problems fall under the “convex” category. The

types that we will be concerned with fall into one of three categories: linear programs

(LPs), quadratically constrained quadratic programs (QCQPs), and semidefinite programs

(SDPs). We will mention others such as second order cone programs (SOCPs) where they

are relevant. We will not go into detail describing the various varieties of convex programs,

since they are described in fine detail in other material. We refer the reader to the very

detailed book by Boyd and Vandenberghe [16, see chap. 4].

One topic vital to the content of this dissertation is duality. Duality is a property of

optimization problems that says that every optimization problem, the primal problem, has

a dual problem (technically a Lagrange dual) and that the optimum for one is a bound on

the optimum for the other, and vice versa (a.k.a. weak duality). This property holds even

when the problem is not convex. When the optima for the two are equal, strong duality

holds. This usually means that the dual can be solved in lieu of the primal and that the

primal variables can be recovered from the dual variables. Convex programs, with some

5

basic criteria, have strong duals. We refer the reader again to Boyd and Vandenberghe [16,

see chap. 5] for more details.

2.2 Support Vector Machines
Given a finite set of n example/label pairs belonging to X × Y , where Y = {−1, 1},

our task is to find a model f (·) that accurately predicts a new label y for some input x.

The support vector machine (SVM), developed by Vapnik and Chervonenkis [73], is one

approach for building such a model.

Specifically, the SVM builds a linear model f (x) = w>x + b when X is a vector space.

We require that f (xi) ≥ 1 for examples where yi = 1 and f (xi) ≤ −1 for yi = −1. We

also wish for ‖w‖ to be as small as possible, because this will generalize to new examples

better than if we allow ‖w‖ to be large. Intuitively, if a new example x is perturbed by a

small amount, then a model with a small ‖w‖ is less likely to move its prediction, which is

the sign of f (x), across the decision boundary to the other class.

With a convex objective, i.e., minimizing ‖w‖, and convex constraints, we can see that

the SVM solves a convex program. Often the objective is given as 1
2‖w‖2

2 so that it is

differentiable, and sometimes as ‖w‖1 to encourage sparsity (classifying on fewer features

of the input). In the quadratic case, this is a quadratic program (QP):

min
1
2
‖w‖2

2 (2.1)

s.t. yi(w>xi + b) ≥ 1, ∀i ∈ [1..n]

The dual to this program is the following:

max ∑
i

αi −
1
2 ∑

i
∑

j
αiαjyiyjx>i xj (2.2)

s.t. ∑
i

αiyi = 0, αi ≥ 0, ∀i ∈ [1..n]

An SVM is also called a maximum margin classifier because it maximizes the space be-

tween positive and negative training examples. This form also has the drawback that if

the training examples are not linearly classifiable, then an SVM cannot find a model that

fits the training data. This form is called a hard margin SVM because there must not be any

examples in the margin.

6

The margin can be “softened” by adding a loss function:

min
1
2
‖w‖2

2 + C
n

∑
i=1

`(f (xi), yi)

When the loss is the hinge loss, that is, `(z, y) = max(0, 1− yz), this yields the formulation

from Cortes and Vapnik [24]:

min
1
2
‖w‖2

2 + C
n

∑
i=1

ξi (2.3)

s.t. yi(w>xi + b) ≥ 1− ξi, ∀i ∈ [1..n]

ξi ≥ 0

The squared hinge loss (replace ξi with ξ2
i in (2.3)) is also common. Soft-margin classifiers

allow examples to lie inside the margin or even in the “wrong” part of the model. In many

cases, this still trains a model that generalizes well. These forms of SVM also have dual

forms, usually simple additions to the constraints on α.

Unfortunately, soft margins are still not enough to fit good models to some datasets.

SVMs allow for a nice “trick” when the dataset does not allow for a good fit. We will

address this issue in Section 2.3.

2.2.1 Modeling the Geometry of SVM

Alternatively, we can frame the SVM problem in a geometric way. Suppose that we

have the same collection of n training examples in Rd × {−1,+1}n as above. In matrix

form, X ∈ Rn×d (the rows x1, x2, . . . , xn are the examples) and y = (y1, . . . , yn) ∈ {−1,+1}n

are the corresponding binary class labels for the data points in X. Let X+ ∈ Rn+×d denote

the rows corresponding to the positive entries of y, and likewise X− ∈ Rn−×d for the

negative entries1.

We can demonstrate that the dual SVM problem (2.2) is equivalent to finding the shortest

distance between the convex hulls of X+ and X−. This shortest distance between the hulls will

exist between two points on the respective hulls (see Figure 2.1). Since these points are in

the hulls, they can be expressed as some convex combination of the rows of X+ and X−,

respectively. That is, if p+ is the closest point on the positive hull, then p+ can be expressed

1The integers n+ and n−, where n+ + n− = n merely indicate the counts of examples in their respective
categories.

7

(primal) margin(dual) closest pair

X+ X�
p�

p+

Figure 2.1: Illustration of primal-dual relationship for classification.

as α>+X+, where α>+1 = 1 and αj ≥ 0, with a similar construction for p− and α−. This in

turn can be written as an optimization:

min
α

1
2
‖p+ − p−‖2 (2.4)

s.t. α>+1 = 1, α>−1 = 1, α+, α− ≥ 0

Collecting all the α terms together by defining αj , αyj,j, and expanding the distance term

‖p+ − p−‖2, it is straightforward to show that Problem (2.4) is equivalent to

min
α

1
2

α>YXX>Yα− α>1 (2.5)

s.t. α>y = 0, αi ≥ 0,

where (2.5) is the matrix-equivalent way of writing the familiar dual SVM problem (2.2).

The equivalence of (2.4) and (2.2) is well known, so we decline to prove it here; see Bennett

and Bredensteiner [10] for a proof of this equivalence.

2.3 Kernels and Reproducing Kernel Hilbert Spaces
If the soft margin technique is still not enough to give us a good model, then we need

to either find a different technique altogether or extend SVMs to allow for richer models.

One of the ways that we can accomplish the latter is to alter the space X in a way that

allows for richer models, usually by increasing the dimensionality of the space.

8

We can construct a lifting map Φ : X → H that adds these new dimensions. Φ is

usually nonlinear, and one example is the map Φ : (x1, x2) 7→ (x2
1,
√

2x1x2, x2
2). This map

“lifts” the data from X = R2 to H = R3. In particular, this map allows us to classify

a two-dimensional dataset where the labels are equal to sgn(x1x2). This labeling is not

linearly classifiable in X and soft margins do not help much. In H, however, the labeling

is classifiable by the second coordinate alone. In the case where the labels are sgn(x2
1 + x2

2−
1), the labeling is classifiable by the first and third coordinates in H, and unclassifiable in

X .

If we make the restriction that H is a Hilbert space, then everything in programs (2.1),

(2.4), and (2.2) still make sense. Obviously, this works when H = Rd, but this also works

when H is infinite-dimensional. In this case, the dot product (·>·) is replaced with the

more general inner product 〈·, ·〉H. The infinite-dimensional case is a problem though,

because we cannot actually store Φ(xi), so we cannot get the SVM to produce a solution.

Looking at the dual problem (2.2) though, we can see that we never use the vector Φ(xi)

except to take its dot product with another lifted vector, i.e., Φ(xi)
>Φ(xj). In an infinite-

dimensional case, we would specify the inner product instead, i.e., 〈Φ(xi), Φ(xj)〉H. If

we define the function κ : X × X → R as κ : (xi, xj) 7→ 〈Φ(xi), Φ(xj)〉H, then we have

something that we can potentially use. The dual program would become

max ∑
i

αi −
1
2 ∑

i
∑

j
αiαjyiyjκ(xi, xj) (2.6)

s.t. ∑
i

αiyi = 0, αi ≥ 0, ∀i ∈ [1..n],

or in matrix notation:

max
α

α>1− 1
2

α>YKYα (2.7)

s.t. α>y = 0, αi ≥ 0, ∀i ∈ [1..n],

where K is a matrix such that Kij = κ(xi, xj). This only works if K is symmetric and positive

semidefinite (K � 0). K is called the Gram matrix for κ and X.

If K � 0 for κ and every X ⊂ X , then κ is said to be a positive-definite (p.d.) kernel. Using

a p.d. kernel in this way is called the kernel trick [15]. If κ has the reproducing property for

a particular Hilbert space of functions H, then 〈 f , κ(·, y)〉H = f (y) — i.e., κ(·, y) evaluates

f at y. Every p.d. kernel κ induces a unique Hilbert space of functions H for which κ has

9

the reproducing property. This is known as the Moore-Aronszajn theorem [4] and H is

called a reproducing kernel Hilbert space (RKHS). The reproducing property turns out to be

important for learning results.

2.3.1 Using Kernels to Predict

Kernels are useful for training a model, but there is one flaw: we do not know what

that model should return if we pass in an example that we have not seen yet. We have

so far based our model on values of κ evaluated at the training points and we have no

idea about κ(x, xi). Fortunately, Schölkopf et al. [68] proved the representer theorem, which

given a risk function like (2.6) shows that if a function f ∗ ∈ H satisfies (2.6), then f ∗ has a

representation f ∗(x) = ∑n
i=1 αiκ(x, xi).

2.3.2 Kernelizing the SVM Dual

The geometric problem (2.4) also admits a kernelized form. The Euclidean norm of the

base vector space in ‖p+ − p−‖2 is merely substituted with the RKHS norm:

‖p+ − p−‖2
κ = κ(p+, p+) + κ(p−, p−)− 2κ(p+, p−),

where the kernel function κ stands in for the inner product. This is dubbed the kernel distance

[65] or the maximum mean discrepancy [36]. The dual formulation (2.5) then changes

slightly, with the covariance term XX> being replaced by the kernel matrix K. For brevity,

we will define G , YKY:

min
α

1
2

α>Gα− α>1 (2.8)

s.t. α>y = 0, αi ≥ 0, ∀i ∈ [1..n].

Obviously, (2.8) is identical to program (2.7).

2.4 Kernel Learning
We can use any p.d. kernel we like, but we are left with the problem of selecting a good

choice to begin with. Kernel learning is the problem of determining the best kernel (either

from a dictionary of fixed kernels, or from a smooth space of kernel representations) for a

given task. We could test several kernels with cross-validation and compare them, but this

would take a lot of time. We would like a way to select the right kernel automatically.

10

Broadly speaking, we can divide kernel learning methods into two categories. The first,

multiple kernel learning (MKL), covers methods that largely assume that the desired kernel

can be represented as a combination of a dictionary of fixed kernels, and seeks to learn

their mixing weights. The other approach is based on a Fourier-analytic representation

of shift-invariant kernels via Bochner’s theorem [14]: roughly speaking, a kernel can be

represented (in a Fourier dual form) as a probability distribution, and so the search for a

kernel becomes a search over distributions.

In both approaches, training the model is challenging with many thousands of training

points and hundreds of dimensions. Standard training approaches either employ some

form of convex or alternating optimization (for MKL) or parameterize the space of distri-

butions in terms of known distributions and try to optimize their parameters.

2.4.1 Multiple Kernel Learning

MKL is simply the SVM problem with the additional complication that the kernel

function is unknown, but is expressed as some function of other known kernel functions.

An early approach (uniformly weighted combination of kernels (UNIFORM), Pavlidis et al.

[63]) eliminated the search and simply used an equal-weight sum of kernel functions.

There are other MKL methods, but we will focus on those that extend SVMs.

In their seminal work, Lanckriet et al. [49] proposed to simultaneously train an SVM as

well as learn a convex combination of kernel functions. The key contribution was to frame

the learning problem as an SDP which in turn reduces to a QCQP. Soon after, Bach et al.

[7] proposed a block-norm regularization method based on a second order cone program

(SOCP).

For efficiency, researchers started using alternating optimization methods that alternate

between updating the classifier parameters and the kernel weights. Sonnenburg et al. [69]

modeled the MKL objective as a cutting plane problem and solved for kernel weights using

Semi-Infinite Linear Programming (SILP) techniques. Rakotomamonjy et al. [67] used sub-

gradient descent-based methods to solve the MKL problem. An improved level set-based

method that combines cutting plane models with projection to level sets was proposed by

Xu et al. [79]. Xu et al. [80] also derived a variant of the equivalence between group LASSO

and the MKL formulation that leads to closed-form updates for kernel weights. However,

11

as pointed out in [23], most of these methods do not compare favorably (both in accuracy

as well as speed) even with the simple UNIFORM heuristic.

Other works in MKL literature study the use of different kernel families, such as Gaus-

sian families [56], hyperkernels [61] and nonlinear families [25, 74]. Regularization based

on the `2-norm [46] and `p-norm [45, 75] have also been introduced. In addition, stochastic

gradient descent-based online algorithms for MKL have been studied in [62]. Another

work by Jain et al. [40] discusses a scalable MKL algorithm for dynamic kernels. We briefly

discuss and compare with this work when presenting empirical results (Section 3.4).

In two-stage kernel learning, instead of combining the optimization of kernel weights as

well as that of the best hypothesis in a single cost function, the goal is to learn the kernel

weights in the first stage and then use it to learn the best classifier in the second stage.

Recent two-stage approaches seem to do well in terms of accuracy – such as Cortes et al.

[26], who optimize the kernel weights in the first stage and learn a standard SVM in the

second stage, and Kumar et al. [48], who train on meta-examples derived from kernel

combinations on the ground examples. In Cortes et al. [26], the authors observe that their

algorithm reduces to solving a meta-SVM which can be solved using standard off-the-shelf

SVM tools such as LibSVM. However, despite being highly efficient on few examples,

LibSVM is very inefficient on more than a few thousand examples due to quadratic scal-

ing [18]. As for Kumar et al. [48], the construction of meta-examples scales quadratically

in the number of samples and so their algorithm may not scale well past the small datasets

evaluated in their work.

Following Lanckriet et al. [49], we assume that the kernel function is a convex com-

bination of other kernel functions, i.e., that there is some set of coefficients µi > 0, that

∑ µi = 1, and that κ = ∑ µiκi (which implies that the Gram matrix version is K = ∑ µiKi).

We regularize by setting tr(K) = 1. The dual problem then takes the following form [49]:

max
K

min
α

1
2

α>Gα− α>1 (2.9)

s.t. K =
m

∑
i=1

µiKi, tr(K) = 1, K � 0, µ ≥ 0

When juxtaposed with (2.4) and (2.2), this can be interpreted as searching for the kernel

that maximizes the shortest (kernel) distance between polytopes.

12

2.4.2 Localized Multiple Kernel Learning

The rationale for localized kernel learning (as illustrated in Section 4.1) is to allow the

weight assigned to different kernels to vary in different parts of the data space to incorpo-

rate any local structure in the data.

2.4.2.1 Localized Multiple Kernel Learning (LMKL)

Gönen and Alpaydin [33] were the first to propose an algorithm to solve this prob-

lem. They called their method localized multiple kernel learning (LMKL). The idea was to

generalize the ηi to be functions of the data x as well as a set of gating parameters V ∈ Rd×m.

They defined a gating function as:

η(x|V) = softmax(x>V + v0),

where v0 is an m-dimensional vector of offsets2.

Given such a gating function, they then defined a generalized discriminant function:

f (x) =
m

∑
i=1

ηi(x|V)〈wi, φi(x)〉+ b,

Expressing the classifier function leads to a non-convex optimization involving the

parameters V. They then proposed solving this problem using a two-step alternating

optimization algorithm, summarized in Algorithm 1.

Algorithm 1 LMKL
1: repeat
2: Calculate Kη , the Gram matrix of the combined kernel, with the gating functions

ηi:
3: (Kη)jk ← κη(xj, xk) = ∑m

i=1 ηi(xj)κi(xj, xk)ηi(xk)
4: Solve canonical SVM with Kη

5: Update gating parameters V using gradient descent
6: until convergence

The complexity of the overall algorithm is dominated by the time to perform the canon-

ical SVM. Other variants of this basic framework include Yang et al. [81], which allows

gating functions to operate on groups of points, and Han and Liu [37] which incorporates

2In later works, they proposed other gating functions that employed sigmoids and Gaussian functions [34].

13

a gating function based on pair-wise similarities inferred from a kernel density estimate

for each kernel.

2.4.2.2 Convex LMKL (C-LMKL)

More recently, Lei et al. [52] noted the non-convex nature of the above objective func-

tion. In order to avoid the tendency of such functions to overfit to the training data,

they proposed an alternate convex formulation of the localized multiple kernel learning

problem. The central idea of their approach is to first construct a soft clustering of the

data, represented by a soft assignment function c`(xj) that associates point xj with cluster

`. Next, they define parameters β`i that associate each of m kernels with each cluster `: in

effect, the soft clustering fixes the locality they wish to exploit, and the β`i then allow them

to use different kernel combinations.

The resulting optimization is convex, assuming that the loss function is convex. This

allows them to obtain generalization bounds as well as good prediction accuracy in prac-

tice. The optimization itself proceeds as a two-stage optimization: the first stage invokes

a standard SVM solver to find the best weight vectors given the β`i and the second stage

optimizes β`i for given weights. This latter stage can in fact be solved in closed form. Thus,

as with LMKL, the term dominating the computation time is the use of an SVM solver.

2.4.2.3 Success-Based Locally-Weighted Kernels (SWMKL)

Kannao and Guha [44] introduced SWMKL as a way to localize kernel learning in

a different manner. Their method is to analyze each kernel for its success on the input

data, then construct a gating function based on smoothing the success with a regression,

summarized in Algorithm 2.

Algorithm 2 SWMKL

1: for all i ∈ [1..m] do
2: Train classifier fi : Rd → {−1, 1} with kernel κi
3: Train regressor gi : Rd → (0, 1) with (X, δ(y, fi(X)))
4: Train classifier using

κ(xj, xk) =
∑m

i=1 gi(xj)κi(xj, xk)gi(xk)

∑m
i=1 gi(xj)gi(xk)

14

Its complexity is controlled by the initial SVM computations, the different support

vector regression operations, as well as the final SVM calculation on the combined kernel

function. The experimental approach in [44] is to separate each kernel by feature – es-

sentially creating individual kernels for each combination of kernel and feature and then

combining them. When testing with this algorithm, we had much better success when

using a kernel on all features.

2.4.2.4 Sample-Adaptive Multiple Kernel Learning (SAMKL)

An alternate approach employed by Liu et al. [53] is to separate out the assignment

of kernels to points and the weights associated with the kernels. In their formulation,

which they describe as sample-adaptive multiple kernel learning, they introduce latent binary

variables to decide whether a particular kernel should operate on a particular point or

not. Each point is therefore mapped to a single point in the product of the feature spaces

defined by the given kernels. Now they run a two-stage alternating optimization: in the

first stage, given fixed values of the latent variables, they solve a multiple kernel learning

problem for the different subspaces simultaneously, and then they run an integer program

solver to obtain new values of the latent variables. Note that each step of the iteration here

involves costly operations (an MKL solver and an integer program solver) in comparison

with the SVM solvers in the other approaches.

2.5 Continuous Kernel Learning
Kernel learning is not limited to kernel mixtures, as described in the previous sections.

Instead, we can speak about the set of all kernels (and RKHSs), and the process of selecting

a kernel becomes a richer idea. Indeed, if we consider kernels as analytical objects, different

tools present themselves for use.

2.5.1 Approaches Utilizing Bochner’s Theorem

One of the key mathematical tools that drives much of kernel learning work is Bochner’s

theorem:

Bochner’s theorem [14]. A continuous function k : Rd → R is positive-definite3 iff k(·) is the

3For our purposes, we define k to be positive-definite if for any vectors {x1, . . . , xn}, the n × n matrix A,

15

Fourier transform of a non-negative measure.

Several papers have been published that explore the connection between Bochner’s

theorem [14] and learning a kernel4. A Bayesian view produces an interpretation of this

optimization as learning the kernel of a Gaussian process (GP). Wilson and Adams [77]

equate stationary (shift-invariant) kernels to the spectral density function of a GP. They

observe that linear combinations of squared-exponential kernels are dense in the space

of stationary kernels. The resulting kernel has few parameters and is relatively easy to

interpret.

Yang et al. [84] extend the ideas in [77] and combine them with the principles from

Fastfood [50]. The authors also discuss variants of their algorithms such as computing a

piecewise linear kernel. Similarly, the BaNK method by Oliva et al. [60] learns a kernel

using the GP technique and trains the kernel using MCMC. Finally in the GP vein, Wilson

et al. [78] integrate a deep network as input to the GP, treating the GP as an “infinite-

dimensional” layer of the network, and optimize the parameters of the GP simultaneously

with the parameters of the network using backpropagation.

Băzăvan et al. [17], in contrast, optimize Fourier embeddings, but decompose each

ωi into a parameter σi multiplied by a nonlinear function of a uniform random variable

to represent the sample. The uniform variable is resampled during optimization as the

parameter is learned.

2.5.2 Infinite-width Networks

Early work on infinite-width networks was done by Neal [59], who tied infinite net-

works to Gaussian processes, assuming that the distribution is Gaussian. Cho and Saul [21]

analyzed the case where the network is either a step network (the output is 1 if the input is

positive, 0 otherwise) or a rectified linear unit (ReLU), a type of network used frequently in

deep networks (the input z is passed through the function max{0, z}). They showed that

if the distribution is Gaussian in these settings, the function φx output by the network is a

lifting map corresponding to a kernel they dub the arc-cosine kernel. Hazan and Jaakkola

where aij = k(xi − xj), is positive semidefinite. That is, y>Ay ≥ 0 for any y ∈ Rn.

4Note that Yang et al. [83] are not producing a kernel learning method, but an effective way to sparsify
CNNs. No comparison to other kernel learning methods is made in [83].

16

[39] extended this result further, and analyzed the kernel corresponding to two infinite

layers stacked in series. They showed that such a network, when the distribution of the

first layer is Gaussian, and the second layer is treated as a Gaussian process (a process is

a distribution of distributions), corresponds to a kernel that can be computed explicitly.

Globerson and Livni [32] produce an online algorithm for infinite-layer networks that

avoids the kernel trick. They demonstrate a sample complexity equal to methods that use

the kernel trick, demonstrating that sampling can be as effective as methods that have

access to kernel values.

2.5.3 Layered Kernels

Zhuang et al. [87] develop a multiple kernel learning technique where they use a lay-

ered kernel to combine the output of several other kernels. Their algorithm alternates the

use of standard SVM and stochastic gradient descent. Lu et al. [54] scale up [66] by making

some interesting mathematical observations about kernels and distributions. Their work

relies heavily on the correspondence between distributions and kernels, a theme that we

explore as well. Yu et al. [86] also seek to optimize a kernel, using alternating optimization

and also based on Bochner’s theorem [14]. Jiu and Sahbi [41, 42] exploit kernel map networks

and Laplacians of nearest-neighbor graphs [42] to produce “deep” kernels for use in SVMs.

2.5.4 Neural Networks as Kernels

Yang et al. [83] exploit the correspondence between ReLUs and arc-cosine kernels [21],

and the sparsity of the Fastfood transform [50] to reduce the complexity of a convolutional

neural net.

Aslan et al. [6] seek to make the optimization of neural networks convex through

kernels and matrix techniques. Mairal et al. [55] extend hierarchical kernel descriptors [12,

13] to act as convolutional layers. Very recently, Wilson et al. [78] combine neural net-

works with Gaussian processes, drawing on the infinite-width network setting, to produce

“deep” kernels.

PART I

KERNEL LEARNING IN SVMS

CHAPTER 3

MULTIPLICATIVE WEIGHT UPDATES-

MULTIPLE KERNEL LEARNING

We present a geometric formulation of the multiple kernel learning (MKL) problem.

To do so, we reinterpret the problem of learning kernel weights as searching for a ker-

nel that maximizes the minimum (kernel) distance between two convex polytopes. This

interpretation combined with novel structural insights from our geometric formulation

allows us to reduce the MKL problem to a simple optimization routine that yields provable

convergence as well as quality guarantees. As a result, our method scales efficiently to

much larger datasets than most prior methods can handle. Empirical evaluation on eleven

datasets shows that we are significantly faster and even compare favorably with a uniform

unweighted combination of kernels.

3.1 Introduction
Multiple kernel learning is a principled alternative to choosing kernels, and has been

successfully applied to a wide variety of learning tasks and domains [3, 7, 27, 49, 63, 69, 85,

88]. Pioneering work by Lanckriet et al. [49] jointly optimizes the support vector machine

(SVM) task and the choice of kernels by exploiting convex optimization at the heart of both

problems. Although theoretically elegant, this approach requires repeated invocations of

semidefinite solvers. Other existing methods [49, 67, 69, 79, 80], albeit accurate, are slow

and have large memory footprints.

We present an alternate geometric perspective on the MKL problem. The starting point

for our approach is to view the MKL problem as an optimization of kernel distances

over convex polytopes (see (2.9)). The ensuing formulation is a quadratically constrained

quadratic program (QCQP) which we solve using a novel variant of the Matrix Multiplica-

tive Weight Update (MMWU) method of Arora and Kale [5], a primal-dual combinatorial

algorithm for solving semidefinite programs (SDPs). While the MMWU approach in its

19

generic form does not yield an efficient solution for our problem, we show that a careful

geometric reexamination of the primal-dual algorithm reveals a simple alternating opti-

mization with extremely light-weight update steps. This algorithm can be described as

simply as: “find a few violating support vectors with respect to the current kernel estimate,

and reweight the kernels based on these support vectors”.

Our approach (a) does not require commercial cone or SDP solvers, (b) does not make

explicit calls to SVM libraries (unlike alternating optimization-based methods), (c) prov-

ably converges in a fixed number of iterations, and (d) has an extremely light memory

footprint. Moreover, our focus is on optimizing MKL on a single machine. Existing tech-

niques [69] that use careful engineering to parallelize MKL optimizations in order to scale

can be viewed as complementary to our work.

A detailed evaluation on eleven datasets shows that our proposed algorithm (a) is

fast, even as the data size increases beyond a few thousand points, (b) compares favorably

with LibLinear [28] after Nyström kernel approximations are applied as feature transfor-

mations, and (c) compares favorably with the uniformly weighted combination of kernels

(UNIFORM) heuristic that merely averages all kernels without searching for an optimal

combination. As has been noted [23], the UNIFORM heuristic is a strong baseline for

the evaluation of MKL methods. We use LibLinear with Nyström kernel approxima-

tions (LIBLINEAR+) as an additional scalable baseline, and we are able to beat both these

baselines when both m and n are significantly large.

3.2 Our Algorithm
The MKL formulation of (2.9) can be transformed (as we shall see later) into a QCQP

that can be solved by a number of different solvers [2, 49, 70]. However, this approach

requires a memory footprint of Θ(mn2) to store all kernel matrices. Another approach

would be to exploit the min-max structure of (2.9) via an alternating optimization: note that

the problem of finding the shortest distance between polytopes for a fixed kernel is merely

the standard SVM problem. There are two problems with this approach: (a) standard

SVM algorithms do not scale well with m and n, and (b) it is not obvious how to adjust

kernel weights in each iteration.

20

3.2.1 Overview

Our solution exploits the fact that a QCQP is a special case of a general SDP. We do

this in order to apply the combinatorial primal-dual matrix multiplicative weight update

(MMWU) algorithm of Arora and Kale [5]. While the generic MMWU has expensive steps

(a linear program and matrix exponentiation), we show how to exploit the structure of the

MKL QCQP to yield a very simple alternating approach. In the “forward” step, rather than

solving an SVM, we merely find two support vector that are “most violating” normal to

the current candidate hyperplane (in the lifted feature space). In the “backward” step, we

reweight the kernels involved using a matrix exponentiation that we reduce to a closed form

computation without requiring expensive matrix decompositions. Our speedup comes

from the facts that (a) the updates to support vectors are sparse (at most two in each step)

and (b) that the backward step can be computed very efficiently. This allows us to reduce

our memory footprint to O(mn).

3.2.2 QCQPs and SDPs

We start by using an observation due to Lanckriet et al. [49] to convert (2.9)1 into the

following QCQP:

max
α,s

(2α>1− s) (3.1)

s.t. s ≥ 1
ri

α>Giα, α>y = 0, α ≥ 0

where Gi = YKiY, r ∈ Rm, and ri = tr(Ki).

Next, we rewrite (3.1) in canonical SDP form in order to apply the MMWU framework:

ω∗ = max
α,s

2α>1− s (3.2)

s.t. ∀i ∈ [1..m] Qi(α) =

(
In Aiα

(Aiα)
> s

)
,

Qi(α) � 0, α>y = 0, α ≥ 0.

where A>i Ai =
1
ri

Gi for all i ∈ [0..m].

1We note that (3.1) is the hard-margin version of the MKL problem. The standard soft-margin variants can
also be placed in this general framework [49]. For the 1-norm soft margin, we add the constraint that all terms
of α are upper bounded by the margin constant C. For the 2-norm soft margin, another term 1

C α>α appears in
the objective, or we can simply add a constant multiple of I to each Gi.

21

3.2.3 The MMWU Framework

We give a brief overview of the MMWU framework of Arora and Kale [5] (for more

details, the reader is directed to Satyen Kale’s thesis [43]). The approach starts with a

“guess” ω for the optimal value ω∗ of the SDP (and uses a binary search to find this guess

interleaved with runs of the algorithm). Assuming that this guess at the optimal value is

correct, the algorithm then attempts to find either a feasible primal (P) or dual assignment

such that this guess is achieved.

Algorithm 3 MMWU template [5]

Input: ε, primal P(1), rounds T, guess ω
for t = 1 . . . T do

forward: Compute update to α(t) based on constraints, P(t) and α(t)

backward: Compute M(t) from constraints and α(t).
W(t+1) ← e−ε ∑t

t=1 M(t)

P(t+1) ← W(t+1)

Tr(W(t+1))

Output: P(T)

The process starts with some assignment to P(1) (typically the identity matrix I). If this

assignment is both primal feasible and at most ω, the process ends. Else, there must be

some assignment to α (the dual) that “witnesses” this lack of feasibility or optimality, and

it can be found by solving a linear program using the current primal/dual assignments

and constraints (i.e., is positive, has dual value at least ω, and satisfies constraints (3.1)).

The primal constraints and α are then used to guide the search for a new primal assign-

ment P(t+1). They are combined to form the matrix Qi(α
(t)) (see (3.1)), and then adjusted

to form an “event matrix” M(t) (see Section 3.2.4.1 for details)2. Exponentiating the sum of

all the observed M(t) so far, the algorithm exponentially reweights primal constraints that

are more important, and the process repeats. By minimizing the loss, the assignments to

P(t) and α(t) are guaranteed to result in an SDP value that approximates ω∗ within a factor

of (1 + ε).

2M(t) generalizes the loss incurred by experts in traditional MWU – by deriving M(t) from the SDP
constraints, the duality gap of the SDP takes the role of the loss.

22

3.2.4 Our Algorithm

We now adapt the above framework to solve the MKL SDP given by (3.2). As we will

explain below, we can assign ω∗ a priori in most cases and we can solve our problem with

only one round of feasibility search. We denote the dual update in iteration t by α(t), the ith

event matrix in iteration t by M(t)
i , and the ith primal variable (matrix) in iteration t by P(t)

i .

P(t)
i is closely related to the desired primal kernel coefficients µi. We denote α = ∑i α(i) as

the accumulated dual assignment thus far and Mi = ∑t M(t)
i as the accumulated ith event

matrix.

3.2.4.1 The Backward Step

It will be convenient to explain the backward step first. Given α(t) and Qi(α
(t)), we

define M(t)
i , 1

2ρ (Qi(α
(t)) + ρIn+1) where ρ is a rate parameter to be set later. Note that

M(t)
i (and M(t)) is “almost-diagonal”, taking the form

[
aIn u
u> a

]
. Such matrices can be

exponentiated in closed form.

Lemma 1. The exponential of a matrix in the form
(

aIn u
u> a

)
, where a ≥ 0 and û = u/‖u‖, is

ea
[(

cosh ‖u‖ûû> sinh ‖u‖û
sinh ‖u‖û> cosh ‖u‖

)
+

(
In − ûû> 0

0 0

)]
.

Proof. We symbolically exponentiate an n + 1× n + 1 matrix of the form

M =

(
aIn u
u> a

)
.

Since this matrix is real and symmetric, its eigenvalues λi are positive and its unit eigenvec-

tors vi form an orthonormal basis. The method that we use to symbolically exponentiate it

is to express it in the form

M =
n

∑
i=1

λiviv>i .

The exponential then becomes

eM =
n

∑
i=1

eλi viv>i .

3.2.4.1.1 Eigenvalues. The characteristic polynomial for M is not difficult to calcu-

late. It is:

(λ− a)n−1(λ2 − 2aλ + a2 − ‖u‖2) = (λ− a)n−1(λ− a + ‖u‖)(λ− a− ‖u‖).

23

This yields n− 1 eigenvalues equal to a, and the other two equal to a + ‖u‖ and a− ‖u‖.
We label them λ1 and λ2, respectively, and the rest are equal to a.

3.2.4.1.2 Eigenvectors. First we show that M has two specific eigenvectors:(
aIn u
u> a

)(
u
±‖u‖

)
=

(
(a± ‖u‖)u
‖u‖2 ± a‖u‖

)
= (a± ‖u‖)

(
u
±‖u‖

)
,

so these are eigenvectors of the form (u,±‖u‖)> with eigenvalues a ± ‖u‖. We will call

the corresponding eigenvectors v1 and v2. Since M is symmetric, all of its eigenvectors are

orthogonal. The remaining eigenvectors are of the form (w, 0)>, where w>u = 0:(
aIn u
u> a

)(
w
0

)
=

(
aw
0

)
.

Clearly the corresponding eigenvalue for any such eigenvector is a, so there are n− 1 of

them. The corresponding parts of these eigenvectors are labeled wi, where 3 ≤ i ≤ n + 1,

and we assume they are unit vectors.

3.2.4.1.3 The exponential. For unit eigenvectors v̂i, since

eM =
n

∑
i=1

eλi
viv>i
‖vi‖2 ,

and the eigenvalue a is of multiplicity n− 1, we have

eM =
eλ1

2‖u‖2

(
uu> ‖u‖u
‖u‖u> ‖u‖2

)
+

eλ2

2‖u‖2

(
uu> −‖u‖u
−‖u‖u> ‖u‖2

)
+ ea

n

∑
i=3

(
wiw>i 0

0> 0

)

= ea

[
e‖u‖

2

(
ûû> û
û> 1

)
+

e−‖u‖

2

(
ûû> −û
−û> 1

)
+

(
In − ûû> 0

0> 0

)]

= ea
[(

cosh ‖u‖ûû> sinh ‖u‖û
sinh ‖u‖û> cosh ‖u‖

)
+

(
In − ûû> 0

0> 0

)]
.

The last term in the equality is due to the fact that û and the ŵi form an orthonormal basis

for Rn, so ûû> + ∑ ŵiŵ>i = In.

Lemma 1 implies that we can exponentiate the event matrix M(t) (see Algorithm 3)

quickly, as promised. In particular, we set P(t+1)
i = c exp(−ε ∑t M(t+1)

i) where c normalizes

the matrix to have unit trace.

In Lemma 1, large inputs to the functions exp, cosh, and sinh will cause them to rapidly

overflow even at double-precision range. Fortunately, there are two steps we can take.

First, cosh(x) and sinh(x) converge exponentially to exp(x)/2, so above a high enough

value, we can simply approximate sinh(x) and cosh(x) with exp(x)/2.

24

Because exp can overflow just as much as sinh or cosh, this does not solve the problem

completely. However, since P is always normalized so that tr(P) = 1, we can multiply

the elements of P by any factor we choose and the factor will be normalized out in the

end. So above a certain value, we can use exp alone and throw a “quashing” factor (e−φ−q)

into the equations before computing the result, and it will be normalized out later in the

computation (this also means that we can ignore the ea factor). For our purposes, setting

q = 20 suffices. This trades overflow for underflow, but underflow can be interpreted

merely as one kernel disappearing from significance.

Note that the structure of P(t) also allows us to avoid storing it explicitly, since (aI) •
(bûû>) = ab. We need only store the coefficients of the blocks of the P(t)

i .

3.2.4.1.4 The exponentiation algorithm. From M(t)
i in Algorithm 3 and (3.2), we

have M(t)
i = 1

2ρ (Qi(α
(t)) + ρIn+1), where ρ is a program parameter which is explained in

Section 3.2.7.

Our Qi(α) =

(
In Aiα

(Aiα)
> 1

)
is of the form

(
aIn ui
u>i a

)
, where a = 1 ∀i and ui = Aiα.

So we have

u>i ui = (Aiα)
>Aiα = α>A>i Aiα = α>

1
ri

Giα,

where the last equality follows from A>i Ai =
1
ri

Gi (cf. (3.2)). As we shall show in Algo-

rithm 6, at each iteration the matrix to be exponentiated is a sum of matrices of the form
1

2ρ (Qi(∑τ
t=1 α(t)) + ρtIn+1), so Lemma 1 can be applied at every iteration.

We provide in detail the algorithm we use to exponentiate the matrix M in Algorithm 4.

Note that the algorithm “warms up” until the quashing term q is large enough, and then

(smoothly) swaps over to what is essentially softmax, or standard MWU. Note that we

elide the quashing computation in the overflow case, because most softmax implementa-

tions will do this internally.

3.2.4.2 The Forward Step

In the forward step, we wish to check if our primal solution P is feasible and optimal,

and if not, find updates to α(t). In order to do so, we apply the MMWU template. The goal

now is to find α(t) such that

∑
i

Qi(α
(t)) • Pi ≥ 0, α(t) ≥ 0, (α(t))>y = 0, and (α(t))>1 = 1.

25

Algorithm 4 Exponentiate-M

Input: y, α, {Gi}, ε′, ρ
for i ∈ [1..m] do
‖ui‖ ←

√
α>Giα

gi ← 1
‖ui‖Giα

‖ui‖ ← ε′
2ρ‖ui‖

q← maxi ‖ui‖
if q < 20 then

for i ∈ [1..m] do
p11

i ← 2 cosh(‖ui‖)
p12

i ← 2 sinh(‖ui‖)
S← m(n− 1) + ∑m

i=1 p11
i

for i ∈ [1..m] do
p12

i ← −p12
i /S

else
p12 ← − softmax(‖ui‖)m

i=1

g← ∑i p12
i gi

return p12, g

The existence of such a α(t) will prove that the current guess P(t) is either primal infeasible

or suboptimal (see Arora and Kale [5] for details).

We now exploit the structure of P(t) given by Lemma 1. In particular, let p11
i = p22

i =

ea cosh ‖ui‖/ tr P and p12
i = −ea sinh ‖ui‖/ tr P. So

Qi(α
(t)) • Pi =

(
0 Aiα

(t)

(Aiα
(t))> 0

)
• Pi + In+1 • Pi = 2p12

i û>i Aiα
(t) + tr(Pi)

∑i Qi(α
(t)) • Pi ≥ 0 then reduces to:

(α(t))>
m

∑
i=0

(2p12
i Aiûi) ≥ − tr(P).

The right-hand side is the negative trace of P (which is normalized to 1), so this becomes

(α(t))>∑
i

2p12
i gi ≥ −1, (3.3)

where gi = (1
ri

Giα)/(1
ri

α>Giα)
1/2. If we let g = ∑i 2p12

i gi (which can be calculated at the

end of the backward step), then we have simply g>α ≥ −1 which is a simple collection of

linear constraints that can always be satisfied3.

3The current margin borders a convex combination of points from each side. If we could not find a point

26

Geometrically, g gives us a way to examine the training points that are farthest away

from the margin. The higher a value gj is, the more it violates the current decision bound-

ary. In order to find a α that satisfies (3.3), we simply choose the highest elements of g that

correspond to both positive and negative labels, then set each corresponding entry in α to
1
2 . Algorithm 5 describes the pseudo-code for this process.

Algorithm 5 FIND-α

Input: y, g
P← {i | yi = 1}, N ← {i | yi = −1}
iP ← arg maxi∈P gi, iN ← arg maxi∈N gi
α← 0
αiP ← 1

2 , αiN ← 1
2

return α
Output: α s.t. α ≥ 0, α>1 = 1, α>y = 0

We highlight two important practical consequences of our formulation. First, the pro-

cedure produces a very sparse update to α: in each iteration, only two coordinates of α

are updated. This makes each iteration very efficient, taking only linear time. Second, by

expressing ui in terms of gi, we never need to explicitly compute Ai (as ui = Aiα), which

in turn means that we do not need to compute the (expensive) square root of Gi explicitly.

Another beneficial feature of the dual-finding procedure for MKL is that terms involv-

ing the primal variables P are either normalized (when we set the trace of P to 1) or

eliminated (due to the fact that we have a compact closed-form expression for P), which

means that we never have to explicitly maintain P, save for a small number (4m) of variables.

3.2.5 Avoiding Binary Search for ω

The objective function in (3.2) is linear, so we can scale s and α and use the fact that

s = α>1 = ω to transform the problem4:

such that the inequality is satisfied, then no point from the convex combination can be found on or past the
margin, which is impossible.

4This fact follows from the KKT conditions for the original problem. The support constraints of the SVM
problem can be written as Gα + by ≥ 1. If we multiply both sides of this inequality by α>, then it becomes an
equality (by complementary slackness): α>Gα = α>1. s is a substitution for α>Gα in the MKL problem [49]
so s = α>1 = ω as well.

27

find α s.t.

1/ω ≥ 1
ri

α>Giα, α>y = 0, α>1 = 1, α ≥ 0.

The first constraint can be transformed back into an optimization; that is,

min
ω

max
α,i

1
ri

α>Giα

s.t. α>y = 0, α>1 = 1, α ≥ 0.

Because ω does not figure into the maximization, we can compute ω simply by maximizing
1
ri

α>Giα. Practically, this means that we simply add the constraint α>1 = 1, and the

“guess” for ω is set to 1. We then know the objective, and only one iteration is needed,

so the binary search is eliminated.

3.2.6 Extracting the Solution from the MMWU

We start by observing that ∑m
i=1 Qi • Pi = 0 (by complementary slackness), which can

rewritten as

m

∑
i=1

2p12
i

ri

(
ri

α>Giα

)1/2

α>Giα = 1. (3.4)

Now recall (from section Section 3.2.4.1) that α>Gα = ∑m
i=1 µi · α>Giα, and we also use

the fact that α>Gα = α>1 = ω = 1. Combining the above two, we have:

m

∑
i=1

µi · α>Giα = 1 (3.5)

Matching (3.4) with (3.5) suggests that 2p12
i

ri

(
ri

α>Giα

)1/2
is the appropriate choice for µi.

3.2.7 Putting It All Together

Algorithm 6 summarizes the discussion in this section. The parameter ε is the error in

approximating the objective function, but its connection to classification accuracy is loose.

We set the actual value of ε via cross-validation (see Section 3.4). The parameter ρ is the

width of the SDP, a parameter that indicates how much the solution can vary at each step.

ρ is equal to the maximum absolute value of the eigenvalues of Qi(α
(t)), for any i [5].

Lemma 2. ρ is bounded by 3/2.

28

Proof. ρ is defined as the maximum of ‖Q(α(t))‖ for all t. Here ‖ · ‖ denotes the largest

eigenvalue in absolute value [5]. Because s = ω = 1 (see Section 3.2), the eigenvalues of

Qi(α
(t)) are 1 (with multiplicity n− 1), and 1± ‖Aiα

(t)‖. The greater of these in absolute

value is clearly 1 + ‖Aiα
(t)‖.

‖Aiα
(t)‖ is equal to

((α(t))TAT
i Aiα

(t))
1
2 =

(
1
ri
(α(t))TGiα

(t)
) 1

2

.

α(t) always has two nonzero elements, and they are equal to 1
2 . They also correspond to

values of y with opposite signs, so if j and k are the coordinates in question, (α(t))TGiα
(t) ≤

(1/4)(Gi(jj) + Gi(kk)), because Gi(jk) and Gi(kj) are both negative.

Because of the factor of 1/ri, and because ri = tr Gi, ‖Aiα
(t)‖ ≤ 1

2 . This is true for any of

the i, so the maximum eigenvalue of Q(α(t)) in absolute value is bounded by 1+ 1
2 = 3

2 .

Note from the proof that since ‖Aiα
(t)‖ ≤ 1

2 , this also means that the eigenvalues

of Q(α(t)) are bounded below by 1
2 . This has consequences for the running time of our

algorithm.

3.2.7.1 Running Time

Every iteration of Algorithm 6 will require a call to FIND-α, a call to EXPONENTIATE-M,

and an update to Giα and α>Giα. FIND-α requires a linear search for two maxima in g, so

the first is O(n). The latter are each O(mn), which dominate FIND-α.

Algorithm 6 requires a total of T iterations at most, where T = 4ρ
ε ln(n). Because the

eigenvalues are guaranteed to be positive, we can use the ` ≤ 0 case described in Section

3.5. Since we only require one run of the main algorithm, the running time is bounded by

O
(

mn ln(n)
1
ε

)
.

3.3 Single-Kernel Form
Interestingly, our proposed MWUMKL can easily be run as a single-kernel algorithm.

This simplifies the algorithm considerably, since reweighting kernels is unnecessary.

29

Algorithm 6 MWUMKL

Input: g(1) = 0;
ρ, the width;
ε, the desired approximation error
Set ε′ = ln(1

2)

Set T = 4ρ
ε ln(n)

repeat[T times]
Get α(t) from Algorithm 5
if Algorithm 5 failed then

return
Update α = α + α(t)

Set M(t)
i = 1

2ρ

(
Qi(α

(t)) + ρIn+1

)
Set W(t)

i =
(1

2

)∑T
t=1 M(t)

i = eε′ ∑T
t=1 M(t)

i (Algorithm 4)

Set P(t+1)
i = W(t)

i / tr(W(t)
i)

Compute g(t+1) from P(t+1), {Gi}, and α
until t = T
return 1

T α, P(T+1)

3.3.1 Polytope Distance Problem

Gärtner and Jaggi [30] describe the polytope distance problem as that of finding the

closest point on the convex hull of a set of points to the origin. When the points are the

set of all difference vectors uij = x+i − x−j for all (i, j) ∈ [n+]⊗ [n−] between positive and

negative examples, the problem is equivalent to solving an SVM. Gilbert’s algorithm [31]

proceeds by iteratively picking points that are closer to the origin than the current point,

along the axis between the origin and the current point, and averaging them into the next

current point.

Note that when proceeding this way with the SVM-equivalent points, all that needs

to happen is to choose the most violating point from each class. Choosing points along

the vector pointing to the current point is a one-dimensional problem, so we need only

examine the most extreme points from each class.

If we have only one kernel in our MKL problem, then we skip the exponentiation step

(since it is redundant). The only step remaining is to consult Algorithm 5. Algorithm 5,

however, is equivalent to the polytope distance algorithm for two polytopes [30], so the

single-kernel version of our algorithm is equivalent to a kernelized version of Gilbert [31].

30

3.4 Experiments
In this section, we compare the empirical performance of MWUMKL with other MKL

algorithms. Our results have two components: (a) qualitative results that compares test

accuracies on small-scale datasets, and (b) scalability results that compares training time on

larger datasets.

We compare MWUMKL with uniformly weighted combination of kernels (UNIFORM)

and LibLinear with Nyström kernel approximations (LIBLINEAR+) as baselines. We eval-

uate these MKL methods on binary datasets from UCI data repository. They include: (a)

small datasets Iono, Breast Cancer, Pima, Sonar, Heart, Vote, WDBC, WPBC, (b) medium

dataset Mushroom, and (c) comparatively larger datasets Adult, CodRna, and Web (see Ta-

ble 3.1).

Classification accuracy and kernel scalability results are presented on small and medium

datasets (with many kernels). Scalability results (with 12 kernels due to memory con-

straints) are provided for large datasets. Finally, we show results for lots of kernels on

small data subsets.

3.4.1 Uniform Kernel Weights

UNIFORM is simply LibSVM [18] run with a kernel weighted equally amongst all of

the input kernels (where the kernel weights are normalized by the trace of their respective

Table 3.1: Datasets used in experiments.

Size Dataset #Points #Dim

Breast Cancer 683 9
Heart 270 13
Iono 351 33

Small Pima 768 8
Sonar 208 60
Vote 435 16

WDBC 569 30
WPBC 198 33

Medium Mushroom 8124 112

Adult 39073 123
Large CodRna 47628 8

Web 64700 300

31

Gram matrices first). The performance of UNIFORM is on par or better than LIBLINEAR+

on many datasets (see Figure 3.1) and the time is similar to MWUMKL. However, UNIFORM

does not scale well due to the poor scaling of LibSVM beyond a few thousand samples (see

Figure 3.2), because of the need to hold the entire Gram matrix in memory5. We employ

Scikit-learn [64] because it offers efficient access to LibSVM.

3.4.2 LibLinear with Nyström Kernel Approximations

One important observation about MKL is that UNIFORM performs as well or better

than many MKL algorithms with better efficiency. Along this same line of thought, we

should consider comparison against methods that are as simple as possible. One of the

very simplest algorithms to consider is to use a linear classifier (in this case, LibLinear [28]),

and transform the features of the data with a kernel approximation. For our purposes,

we use Nyström approximations as described by Williams and Seeger [76] and discussed

further by Yang et al. [82]. Because LibLinear is a primal method, we do not need to scale

each kernel – each kernel manifests as a set of features, which the algorithm weights by

5This is true even when LibSVM is told to use one kernel, which it can compute on the fly – the scaling of
LibSVM is O(n2) - O(n3) [18], poor compared to MWUMKL and LIBLINEAR+ with increasing sample size.

●

●

●

●

●

● ●

●

breast heart iono pima

sonar vote wdbc wpbc
0%

10%
20%
30%

0%
10%
20%
30%

m
is

cl
as

si
fic

at
io

n
ra

te

method ● MWUMKL LibLinear+ Uniform

Figure 3.1: Median misclassification rate for small datasets.

32

●

●

●

●
● ● ●

● ●
●

1 m

10 m

1 h

25% 50% 75% 100%
% of examples

tim
e

method ● MWUMKL LibLinear+ Uniform

Figure 3.2: CodRna (n = 59535, d = 8) with 12 kernels.

definition.

For the Nyström feature transformations, one only needs to specify the kernel function

and the number of sample points desired from the dataset. We usually use 150 points,

unless memory constraints force us to use fewer. Theoretically, if s is the number of sample

points, n the number of data points, and m the number of kernels, then we would need

space to store O(snm) double-precision floats. With regard to time, the training task is

very rapid – the transformation is the bottleneck (requiring O(s2mn) time to transform

every point with every kernel approximation).

We employ Scikit-learn [64] for implementations of both the linear classifier and the

kernel approximation because (a) this package offloads linear support-vector classification

to the natively-coded LibLinear implementation, (b) it offers a fast kernel transformation

using the NumPy package, and (c) Scikit-learn makes it very easy and efficient to chain

these two implementations together. In practice, this method is very good and very fast

for low numbers of kernels (see Figure 3.1, Figure 3.3, and Figure 3.4). For high numbers

33

●

●

● ●

15%

20%

25%

30%

25% 50% 75% 100%
% of examples

m
is

cl
as

si
fic

at
io

n
ra

te

method ● MWUMKL LibLinear+

Figure 3.3: Adult (n = 48842, d = 123) with m = 12 kernels

of kernels, this scaling breaks down due to time and memory constraints (see Figure 3.5).

3.4.3 Legacy MKL Implementations

In all cases, we omit the results for older MKL algorithm implementations such as

(a) SILP [69], (b) SDPMKL [49], (c) SIMPLEMKL [67], (d) LEVELMKL [79], and (e) GROUP-

MKL [80] which take significantly longer to complete, have no significant gain in accuracy,

and do not scale to any datasets larger than a few thousand samples. For example, on Sonar

(one of the smallest sets in our pool), each iteration of SILP takes about 4500 seconds on

average whereas UNIFORM requires 0.03 seconds on average.

3.4.4 Experimental Parameters

Similar to Rakotomamonjy et al. [67] and Xu et al. [80], we test our algorithms on a base

kernel family of 3 polynomial kernels (of degree 1 to 3) and 9 Gaussian kernels. Contrary

to [67, 80], however, we test with Gaussian kernels that have a tighter range of bandwidths

({20, 21/2, . . . , 24}, instead of {2−3, 2−2, . . . , 25}). The reason for this last choice is that

34

●

● ●
●

1.25%

1.50%

1.75%

25% 50% 75% 100%
% of examples

m
is

cl
as

si
fic

at
io

n
ra

te

method ● MWUMKL LibLinear+

Figure 3.4: Web (n = 64700, d = 300) with m = 12 kernels

our method actively seeks solutions for each of the kernels, and kernels that encourage

overfitting the training set (such as low-bandwidth Gaussian kernels) pull MWUMKL

away from a robust solution.

For small datasets, kernels are constructed using each single feature and are repeated 30

times with different train/test partitions. For medium and large datasets, due to memory

constraints on LIBLINEAR+, we test only on 12 kernels constructed using all features, and

repeat only 5 times. All kernels are normalized to trace 1. Results from small datasets

are presented with a 95% confidence interval that the median lies in the range. Results

from medium-large datasets present the median, with the min and max values as a range

around the median. In each iteration, 80% of the examples are randomly selected as the

training data and the remaining 20% are used as test data. Feature values of all datasets

have been scaled to [0, 1]. SVM regularization parameter C is chosen by cross-validation.

For example, in Figure 3.1, results are presented for the best value of C for each dataset

and algorithm.

35

●●
●

● ●
● ●●

●

●
●

●

1 ms

10 ms

100 ms

1 s

10 s

256 512 1024 2048 4096
training size

tim
e

pe
r

ke
rn

el
method ● MWUMKL LibLinear+ Uniform

Figure 3.5: Time per kernel vs. data size for small and medium datasets (log-log).

For MWUMKL, we choose ε by cross-validation. Most datasets get ε = 0.2, but the

exceptions are Web (ε = 0.07), CodRna (ε = 0.07), and Adult (ε = 0.05). Contrary to existing

works we do not compare the number of SVM calls (as MWUMKL does not explicitly use

an underlying SVM) and the number of kernels selected.

Experiments were performed on a machine with an Intel R© CoreTM 2 Quad CPU (2.40

GHz) and 2GB RAM. All methods have an outer test harness written in Python. MWUMKL

also uses a test harness in Python with an inner core written in C++.

3.4.5 Accuracy

On small datasets, our goal is to show that MWUMKL compares favorably with Lib-

Linear with Nyström kernel approximations (LIBLINEAR+) and UNIFORM in terms of test

accuracies.

In Figure 3.1, we present the median misclassification rate for each small dataset over

30 random training/test partitions. In each case, we train the classifier with 12 kernels for

36

each feature in the dataset, and each kernel only operates on one feature. We are able either

to beat the other methods or remain competitive with them.

3.4.6 Data Scalability

Both MWUMKL and LIBLINEAR+ are much faster as compared with UNIFORM. At

this point, Adult, CodRna, and Web are large enough datasets that UNIFORM fails to com-

plete because of memory constraints. This can be seen in Figure 3.2, where we plot training

time versus the proportion of the training data used – the training time taken by UNIFORM

rises sharply and we are unable to train on this dataset past 11907 points. Hence, for the

remaining experiments on large datasets, we compare MWUMKL with LIBLINEAR+. In

Figure 3.3 and Figure 3.4, we choose a random partition of train and test, and then train

with increasing proportions of the training partition (but always test with the whole test

partition). With more data, our algorithm settles in to be competitive with LIBLINEAR+.

3.4.7 Kernel Scalability

We aim to demonstrate not only that MWUMKL performs well with the number of

examples, but also that it performs well against the number of kernels. In fact, for an MKL

algorithm to be truly scalable, it should do well against both examples and kernels.

For kernel scalability, we present the training times for the best parameters of several

of the datasets, divided by the number of kernels used, versus the size of the dataset (see

Figure 3.5). We divide time by number of kernels because time scales very close to linearly

with the number of kernels for all methods. Also presented are log-log models fit to the

data, and the median of each experiment is plotted as a point.

We report the time for the same experiments that produced the results in Figure 3.1,

and also train on increasing proportions of Mushroom (1625, 3250, 4875, and 6500 examples)

with 1344 per-feature kernels. With these selections, we are testing mn in the neighborhood

of 8.7 million elements.

As expected, UNIFORM scales quadratically or more with the number of examples,

performing very well at the lower range. The number of examples from Mushroom is not

so high that LibSVM runs out of memory, but we do see the algorithm’s typical scaling.

LIBLINEAR+ shows slightly superlinear scaling, with a high multiplier due to the ma-

trix computations required for the feature transformations. As we run the algorithm on

37

Mushroom, the number of samples taken for the kernel approximations is reduced so that

the features can fit in machine memory. Even so, this reduction does not offer any help to

the scaling and at 6500 examples with 1344 kernels, training time is several hours.

Even though we reduced the number of samples for LIBLINEAR+, MWUMKL outper-

forms both UNIFORM and LIBLINEAR+ when both examples and kernels are greater than

about 103.

3.4.8 Dynamic Kernels

We also present results for a few datasets with lots of kernels. By computing columns of

the kernel matrices on demand, we can run with a memory footprint of O(mn), improving

scalability without affecting solution quality (a technique also used in SMOMKL [75]).

Table Table 3.2 shows that we can indeed scale well beyond tens of thousands of points,

as well as many kernels.

We choose the above datasets to compare against another work on scalable MKL [40].

Jain et al. [40] indicate the ability to deal with millions of kernels, but in effect the technique

also has a memory footprint of Ω(mn) (the footprint of MWUMKL is Θ(mn), in contrast).

This limits any such approach to either many kernels or many points, but not both.

Since the work in Jain et al. [40] does not provide accuracy numbers, a direct head-

to-head comparison is difficult to make, but we can make a subjective comparison. The

above table shows times for MWUMKL with accuracy similar to or better than what

LIBLINEAR+ can achieve on the same datasets. The time numbers we achieve are similar

in order of magnitude when scaled to the number of kernels demonstrated in Jain et al.

[40].

Table 3.2: MWUMKL with on-the-fly kernel computations.

Dataset #Points #Kernels Time

Adult 39073 3 13 minutes
CodRna 47628 3 147 seconds

Sonar 1M 208 1000000 3.65 hours

38

3.5 How to Shave a Factor of 1/δ from Our Bound
This applies generally to any SDP where you can guarantee that Q(y(t)) = ∑j Ajy

(t)
j −C

has a tighter constraint on the eigenvalues.

3.5.1 Replacing Parts of the Algorithm

This section refers to Section 4.4 of Kale’s PhD thesis [43]. The reader should follow

along with that document.

3.5.1.1 The (`, ρ)∗-bounded ORACLE

We change Definition 2 slightly to accomodate our changes. We introduce a modified

definition:

Definition 2. An (`, ρ)∗-bounded ORACLE, for parameters ρ ≥ 0 and |`| ≤ ρ, is an

algorithm that finds a vector y ∈ Dα that satisfies Kale [43, Formula (4.1)] such that either

Q(y(t)) ∈ [−`, ρ] or Q(y(t)) ∈ [−ρ, `] holds. The value ρ is called the width of ORACLE.

We assume that we replace a (`, ρ)-bounded ORACLE with a (`, ρ)∗-bounded ORACLE.

The only difference between the two is that a (`, ρ)∗-bounded ORACLE is allowed to let

` < 0 (i.e., we can force Q(y(t)) � 0 and analyze that case).

3.5.1.2 ε and T

We set ε = 1
2 and T = 2(`+ρ)R ln n

δα . These changes shave the factor of 1
δ . The change to ε

also eliminates the need for a lower bound on `, and in fact opens up the other part of the

range (−ρ, δα
R]. ` was constrained to [δα

R , ρ] if ε = δα/2`R, then ε ≤ 1
2 , which is required by

the Matrix Multiplicative Weight Updates algorithm. Here we satisfy the bound on ε by

fiat, and as it turns out, gives us the other part of the range for `.

3.5.1.3 M(t)

The purpose of setting M(t) equal to 1
`+ρ [Q(y(t)) + `(t)I] in Kale [43, Formula (4.2)]

is to guarantee the positive (negative) semidefiniteness of M(t). Either M(t) ∈ [0, 1] or

M(t) ∈ [−1, 0], so it may be used in Kale [43, Formula (3.3)]. In the case of a (`, ρ)∗-bounded

ORACLE, however, allowing ` < 0 lets us reduce the eigenvalues. Note that if ` < 0,

we do not need to branch `(t) = ±`. If we can ever guarantee that Q(y(t)) � 0, then

39

Q(y(t)) • X(t) ≤ 0, and ORACLE will reject y(t).

3.5.2 Proof of Kale [43, Theorem 13]

The proof of Theorem 13 goes through with some minor changes. M(t) is the same, so

M(t) • P(t) is the same as well:

M(t) • P(t) =
1

`+ ρ

[
Q(y(t)) + `(t)I

]
• 1

R
X(t) ≥ `(t)

`+ ρ
.

Plugging this into Kale [43, Formula (3.3)], we still get that

0 ≤ λn (Q(ȳ)) + ε`+
(`+ ρ) ln n

εT

−δα

R
≤ λn (Q(ȳ))

−δα

R
I � Q(ȳ),

as long as

ε`+
(`+ ρ) ln n

εT
≤ δα

R
. (3.6)

For the case in [43], ε varies with δ, and ` is lower-bounded by δα
R so that ε ≤ 1

2 . If we

transform Inequality (3.6) so that T is alone on the left, we get:

ε`+
(`+ ρ) ln n

εT
≤ δα

R
(`+ ρ) ln n

εT
≤ δα

R
− ε` =

δα− ε`R
R

εT
(`+ ρ) ln n

≥ R
δα− ε`R

T ≥ 1
ε

(`+ ρ)R ln n
δα− ε`R

.

If ` is large, it is easy to see that we would need to construct ε in such a way that the

denominator remains positive. The most efficient way to do this is to choose ε so that

ε`R = δα
2 . Unfortunately, this also means that T is quadratic in 1

δ .

For ` ∈
(
0, δα

R

]
, we can shuffle things around, set ε to be a constant 1

2 , and get T to scale

linearly in 1
δ , but since the point is to scale T against δ, this is irrelevant. As δ gets smaller,

once δα
R drops below `, T scales quadratically with 1

δ .

40

For negative `, we can simply toss out the ε` term:

ε`+
(`+ ρ) ln n

εT
≤ (`+ ρ) ln n

εT
≤ δα

R

T ≥ 1
ε

(`+ ρ)R ln n
δα

.

Setting an aggressive ε = 1
2 gives us a bound linear in 1

δ . We can now build a complete

description of what values to give ε and T for any value of `:

` ≤ 0 : ε =
1
2

T =
2(`+ ρ)R ln n

δα

` > 0 : ε =
δα

2`R
T =

4`(`+ ρ)R2 ln n
δ2α2

(
T =

8`ρR2 ln n
δ2α2

)

CHAPTER 4

LOCALIZED DECISION-BASED MULTIPLE

KERNEL LEARNING

Most multiple kernel learning (MKL) methods seek the combined kernel that performs

best over every training example, sacrificing performance in some areas to seek a global op-

timum. Localized kernel learning (LKL) overcomes this limitation by allowing the training

algorithm to match a component kernel to the examples that can exploit it best. Several

approaches to the localized kernel learning problem have been explored in the last several

years. We unify many of these approaches under one simple system and design a new

algorithm with improved performance. We also develop enhanced versions of existing

algorithms, with an eye on scalability and performance.

4.1 Introduction
While MKL has been studied extensively and has had success in identifying the right

kernel for a given task, it is expressively limited because each kernel has influence over

the entire data space. Consider an example of a binary classification task, depicted in

Figure 4.1. On the left side, we show the results of classifying the data with a global

MKL method (here, the UNIFORM method of Cortes et al. [25]) and on the right side, we

show the results of classification with our new proposed method LD-MKL. Because the

global method requires that each kernel be used to classify each point in the same way, the

decision boundary is not as flexible and many more support points are required.

Motivated by this, a few directions have been proposed to build localized kernel learn-

ing solutions. Gönen and Alpaydin [34] introduced the idea of a learned gating function

that modulated the influence of a kernel on a point (LMKL). Lei et al. [52] observed that

LMKL uses a non-convex optimization and suggested using a probabilistic clustering to

generate part of the gating function beforehand, in order to obtain a convex optimization

and thus prevent over-fitting and yield generalization bounds (C-LMKL). Kannao and

42

Figure 4.1: Illustration of the difference between global (left) and local (right) multiple
kernel learning. In each example, the classifier is built from two kernels, one quadratic
and one Gaussian. Points from the two classes are colored blue and red (with transparency
as a hint towards density). The decision boundary is marked in green and the margin
boundaries are in the appropriate colors for the global case. For the local case, the margins
of each kernel are plotted with dotted lines, red for Gaussian and blue for quadratic.
Support points are indicated by black circles around points. Note that the classifier uses a
soft-margin loss and so support points may not be exactly on the margin boundary. The
global version (left) has 118 support points, while the local version (right) has only 20.

Guha [44] suggested a different approach to find a gating function by looking at individual

features of the input, and uses successes of the individual kernels to learn the gating

function through support vector regression (SWMKL).

All of the above approaches invoke a fixed-kernel support vector machine (SVM) sub-

routine as part of the algorithm. This is inefficient, and prevents these methods from

scaling. C-LMKL does argue for a convex formulation of the problem, but does not

directly address the problem of scaling.

4.1.1 Our Contributions

We present a unified interpretation of localized kernel learning that generalizes all of the

approaches described above, as well as the general MKL formulation. This interpretation

yields a new algorithm for LKL that is superior to all existing methods. In addition, we

make use of prior work on scalable MKL (Chapter 3) as a subroutine to make existing

methods for LKL scale well, improving their performance significantly in some cases.

Our interpretation relies on a geometric interpretation of gating functions in terms

of local reproducing kernel Hilbert spaces acting on the data. This interpretation also

43

helps explain the observation above (only empirically observed thus far) that local kernel

learning methods appear to produce good classifiers with fewer support points than global

methods.

4.2 Background
Because we discuss several approaches to localized MKL, and each uses a different set

of notations, we choose our own convention:

• i indexes kernel functions/spaces and the number of individual kernel spaces is m.

• j and k index examples and the number of training points is n.

• t is used to indicate iterations in an algorithm.

• The Greek letter κ is used to indicate a kernel function. κi(xj, xk) is the ith kernel

function applied to training examples xj and xk.

4.3 A Unified View of Localized Kernel Learning
One of the contributions of this work is a unified perspective that integrates these

different approaches and also helps explain the somewhat paradoxical fact that localized

MKL often yields classifiers with fewer support points than standard MKL methods.

4.3.1 Localization via Hilbert Subspaces

Consider the following generalized and gated kernel κγ defined as:

κγ(x, x′) =
m

∑
i=1

γi(x, x′)κi(x, x′),

where γi : Rd ×Rd → [0, 1] is a “gating function.”

We call γi separable if it decomposes into a product of a function with itself, i.e., if

γi(x, x′) = ηi(x)ηi(x′), where ηi : Rd → [0, 1]. For the rest of this section, we only consider

separable gating functions. We also make two additional assumptions for all x ∈ Rd: (1)

∑m
i=1 ηi(x) = 1, and (2) ηi(x) ≥ 0 ∀i ∈ [1..m].

4.3.1.1 The RKHS of a Localized Kernel

Consider the Gram matrix Hi of γi: specifically the n× n matrix Hi whose (j, k)th entry

is γi(xj, xk) (we will refer to this later as the gating matrix). If γi is separable, then we know

44

that Hi is positive definite, because it can be expressed as the outer product of a vector

with itself (Hi = η>η). Defining Ki as the Gram matrix of the kernel κi, it is now easy to

see that we can write the Gram matrix of the kernel κγ as the matrix ∑i Hi ◦Ki.

In the separable case, since both Hi and Ki are positive definite, so is Hi ◦ Ki by the

Schur product theorem. Therefore, γi(x, x′)κi(x, x′) is a positive-definite (p.d.) kernel, and

the corresponding lifting map is ηi(x)Φi(x).

We know that a positive linear combination of kernel functions is itself a kernel function

and induces a product reproducing kernel Hilbert space (RKHS) that is a simple Cartesian

product of all the individual Hilbert spaces. The inner product of this space is just the sum

of all the individual inner products. Thus the kernel κγ has a natural feature space as the

product of the individual feature spaces.

4.3.1.2 Localization

This framework now allows us to provide a geometric intuition for why localized

kernel learning might be able to reduce the number of required support points. Suppose

that ηi(x) = 0. This implies that 〈ηi(x)Φi(x), ηi(x′)Φi(x′)〉 is always 0. Because the ith

RKHS is one component of the product RKHS, this means that ηi(x)Φi(x) lies in some

subspace perpendicular to this RKHS.

Furthermore, suppose that ηi(x) = 1. By our assumptions that ∑m
i=1 ηi(x) = 1 and

that ηi is non-negative, this means that ηi(x)Φi(x) is absent from every other RKHS in the

product. Therefore, ηi(x)Φi(x) lies exclusively in the i-th RKHS.

This partitioning behavior is advantageous, because it is much simpler to find decision

boundaries within the individual RKHS components rather than trying to find one that

will work for all at the same time. The decision hyperplane in the product RKHS will be the

unique hyperplane that intersects all the subspaces in their respective decision boundaries.

Depending on the gating function, there will of course be some training examples that

are “confused” about what subspace to lie in. Therefore, we wish to pick a set of gating

functions that reduces this confusion. The crucial property of the gating function γi and

the gating matrix Hi is that they are separable. With the separability constraint, we need

only find a set of one-dimensional functions that works for the training data1.

1If the gating function is not separable, but is decomposable into a positive linear combination of a fixed-

45

4.3.2 Gating and Optimization

The localized MKL algorithms described above (and in fact virtually all localized kernel

learning algorithms) can be placed in the framework we have just described, thus explain-

ing in a broader context how their localization works. The specifics differ on how the

function κγ is generated:

1. Gating: Each algorithm has a gating function γi(x, x′) for every kernel function κi.

Recall that the gating function simply controls the degree to which a kernel responds

to a particular point.

2. Optimization: Each algorithm also has an optimization behavior that either gener-

ates or tunes each γi.

4.3.2.1 LMKL

• Gating: The gating function is separable, and η(x) = softmax(x>V + v0).

• Optimization: Alternating optimization using an SVM solver to find the kernel

support points and stochastic gradient descent to find the parameters V, v0.

4.3.2.2 C-LMKL

• Gating: The gating function is separable, but not directly. η(x) = ∑`
r=1 βircr(x)cr(x′),

where βir ≥ 0 is the weight with which kernel i influences points associated with

cluster r, and cr is the (precomputed) likelihood of x falling into cluster r.

Since γi decomposes into a linear combination βircr(x)cr(x′), we can apply Section

4.3.1 to C-LMKL. In C-LMKL, we replicate each kernel ` times (once for each cr)

and give each its own weight
√

βir.

• Optimization: The parameters βir are learned through (convex) optimization and

the functions cr are generated through ` different clusterings.

size set of separable functions, then the partitioning is still possible – see Section 4.3.2.2 below, under “C-
LMKL”.

46

4.3.2.3 SWMKL

• Gating: The gating function is not separable in this case, because the γi are normal-

ized pairwise. γi(x, x′) = gi(x)gi(x′)/Z(x, x′), where Z(x, x′) = ∑m
i=1 gi(x)gi(x′), and

gi are the SVR-generated functions.

Note that while κγ may be positive definite, its individual terms are very unlikely

to be so. It is therefore not clear whether this algorithm in its unmodified form can

be placed in our unified context. We explore this issue in greater depth in the next

section.

• Optimization: The gating functions gi are generated using SVR from X× δ(y, ŷi).

4.3.2.4 SAMKL

• Gating: ηi(x) is a binary-valued function that decides if kernel i should be used for

point x.

• Optimization: The optimization is an alternating optimization between the gating

function and the kernel parameters. Because the ηi are binary-valued, a further mul-

tiple kernel learning step is required to determine kernel weights and support vectors

for the classifier, and the gating parameters are learned with an integer programming

solver.

4.3.2.5 Global (“classic”) MKL

• Gating: ηi(x) =
√

µi, where µi ≥ 0 is constant for every kernel, that is, does not

change relative to each point.

• Optimization: The µi can be optimized using several methods including stochastic

gradient descent, multiplicative weight updates, and alternation.

4.4 LD-MKL: A New Algorithm for Localized Kernel Learning
Viewing the algorithms for localized kernel learning in a common framework illus-

trates both their commonalities and their weaknesses. With the exception of SWMKL, all

the approaches make use of a two- (or three-) stage optimization of which LibSVM is one

component. As we shall see in our experiments, this renders these methods quite slow

and not easy to scale. SWMKL on the other hand avoids this problem by doing single

47

SVM calculations for each kernel and then combining them into a single larger kernel.

This improves its running time, but makes it incur a large memory footprint in order to

build a classifier for the final kernel.

We now present a new approach, inspired by SWMKL, that addresses these concerns.

Our method, which we call LD-MKL (localized decision-based MKL), fits into the unified

framework for localized kernel learning via the use of local Hilbert spaces, avoids the large

memory footprint of SWMKL, and also scales far more efficiently than the other multistage

optimizations.

We start by observing that the first steps of Algorithm 2 give us a classifier fi and a

gating function gi. The function fi, since it is an SVM decision function, can be formulated

as

fi(x) =
n

∑
j=1

αijyjκi(xj, x).

Note that α has an additional index to indicate which kernel we trained the classifier

against. Suppose we modify this function to incorporate the gating function gi
2:

f i(x) =
n

∑
j=1

αijyjgi(xj)κi(xj, x). (4.1)

f i is the SVM prediction function, but where each support point αij is weighted by its

gating value. We can now construct a weighted vote using these functions. We combine

the output of each f i, apply tanh3, and weight by gi:

f (x) =
m

∑
i=1

gi(x) tanh(f i(x)) (4.2)

Algorithm 7 contains the listing of this procedure. Note that we retrain each classifier

on the subset of the data where the corresponding gating function is significant (i.e., is

greater than 1/m). This reduces the support points considerably because the classifier is

retrained only on points that it classified well.

If commonly-used kernels are employed (such as linear, polynomial, or Gaussian ker-

nels), then this method can take advantage of optimizations that exist in, e.g., LibSVM to

2As discussed in the previous section, we assume that the gating functions have been normalized so that
(1) ∑m

i=1 gi(x) = 1 and (2) gi(x) ≥ 0 ∀i ∈ [1..m].

3We use tanh(f i(x)) instead of the sign of f i(x) so that uncertain classifications (i.e., kernels with resulting
values of f i(x) near 0) do not pollute the vote with noise.

48

Algorithm 7 LD-MKL

1: for all i ∈ [1..m] do
2: Train classifier fi : Rd → {−1, 1} with kernel κi
3: Train regressor gi : Rd → (0, 1) with (X, δ(y, fi(X)))
4: Normalize regressors gi with softmax
5: for all i ∈ [1..m] do
6: Retrain classifier fi on (X, y)gi(x)>1/m

7: Compute each decision function using (4.1)
8: Classify inputs using sign of (4.2)

train the classifiers and regressors quickly. The training step is over after the regressors are

computed and normalized.

It is easy to see that LD-MKL has the desired gating behavior with separable gating

functions. The optimization step is as before, but without needing to consult a final SVM

solver.

4.5 Experiments
Our experiments will seek to validate two main claims: first that LD-MKL is indeed

superior to prior localized kernel learning methods, and second that there is demonstrable

reduction in the number of support points when using localized methods.

4.5.1 Scalability

In addition, we will also investigate ways to make existing localized methods more

scalable. As noted, with the exception of SWMKL, all approaches use a multistage iterative

optimizer of which one step is an SVM solver. We instead make use of MWUMKL,

described in Chapter 3. This method has a much smaller memory footprint and uses

a lightweight iteration that also yields sparse support vectors. While this solver was

designed for multiple kernel learning, it is easily adapted as an SVM solver.

4.5.2 Datasets

Table 4.1 contains information about the various datasets that we test with. All of these

sets are taken from the libsvm repository4.

4https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html

49

Table 4.1: Datasets for comparison of LMKL, SWMKL, and C-LMKL

Dataset Examples Features

Breast Cancer 683 10
Diabetes 768 8
German-Numeric 1000 24
Liver 345 6
Mushroom 8192 112
Gisette 6000 5000
Adult 32561 123

4.5.3 Methodology

In each of the experiments, we partition the data randomly between 75% train and 25%

test examples. Unless otherwise indicated, we repeat each partition 100 times and average

the run time and the accuracy. In all experiments where we measure accuracy, we use

the proportion of correctly classified points. Where possible, we also report the standard

deviation of all measured values in parentheses. Superior values are presented in bold

when the value minus the standard deviation is greater than all the other values plus their

respective standard deviations.

In each experiment where we used a standard SVM solver, we used LibSVM [18] via

scikit-learn [64]. We use the default LibSVM parameters (e.g., tolerance), and vary them

only for changing specific kernels and passing specific kernel parameters. We use C =

1.0 and for Gaussian kernels, a range of γ from 2−4 to 24 are tried and the best accuracy

observed is used.

4.5.4 Implementations

For LMKL, we took MATLAB code provided by Gönen and Alpaydin [34]5 and con-

verted it to python to have a common platform for comparison. This code included an

SMO-based SVM solver which we converted as well. We verified correctness of interme-

diate and final results between the two platforms before running our experiments. For

SWMKL and LD-MKL, we used the SVM and SVR solvers from scikit-learn. For

C-LMKL, as prescribed by Lei et al. [52], we used a kernel k-means preprocessing step

with a uniform kernel and three clusters. For large datasets, kernel k-means is very slow,

5http://users.ics.aalto.fi/gonen/icml08.php

50

and so we used a streaming method proposed by Chitta et al. [20] that runs the clustering

algorithm on a sample (of size 1000 in our experiments) and then estimates probabilities

for the remaining points. The global kernel learning methods we used were UNIFORM,

which merely averages all kernels, SPG-GMKL [40]6 and MWUMKL (Chapter 3). All

experiments were conducted on Intel R© Xeon R© E5-2650 v2 CPUs, 2.60GHz with 64GB

RAM and 8 cores.

4.5.5 Evaluating LD-MKL

We start with an evaluation of LD-MKL in Table 4.2. In each row, we present accuracy

and timing (numbers in parentheses are standard deviations). As we can see, for small

datasets, SWMKL is the fastest method, but for larger datasets, LD-MKL is the fastest.

In comparison with LMKL and C-LMKL, SWMKL and LD-MKL are considerably faster.

This speedup is obtained without any significant loss in accuracy: in all cases, the accuracy

of LD-MKL is either the best or is less than optimal in a statistically insignificant way.

6http://www.cs.cornell.edu/~ashesh/pubs/code/SPG-GMKL/download.html

Table 4.2: Accuracies and running times for various datasets and methods, using LibSVM
as the SVM solver. Numbers in parentheses are standard deviations. For the first four
datasets, numbers are averaged over 100 runs. For the last three larger datasets, numbers
are averaged over 20 runs. Values which are significantly superior to that of other methods
are typeset in bold.

LMKL SWMKL LD-MKL C-LMKL

Breast 96.58 % (1.35 %) 97.1% (1.1%) 97.1% (1.2%) 96.7% (1.1%)
Cancer 122 s (8.9 s) 0.15 s (2.1 ms) 0.14 s (2.36 ms) 28.7 s (80 ms)
Diabetes 74.71% (3.07%) 77.0% (2.7%) 76.7% (2.56%) 76.4% (2.4%)

157.6 s (34 s) 0.18 s (1.4 ms) 0.24 s (3.58 ms) 36.8 s (32 ms)
German- 70.78% (2.85%) 75.7% (2.4%) 75.84% (2.51%) 76.8% (1.6%)
Numeric 216 s (22 s) 0.27 s (3.8 ms) 0.38 s (3.56 ms) 69.6 s (20 ms)
Liver 62.49% (5.92%) 69.3% (5.0%) 65.19% (5.81%) 57.7% (5.1%)

35.4 s (7.2 s) 0.1 s (1.4 ms) 0.83 s (1.3 ms) 7.4 s (129 ms)
Mushroom 99.99% (0.0%) 99.9% (0%) 100.0% (0.0%) 100% (0.0%)

17.27 m (1.2 m) 14.57 s (1.2 s) 3.1 s (0.3 s) 2.43 h (12.6 m)
Gisette 97.22% (0.34%) 97.06% (0.35%) 96.88% (0.46%) 96.5% (0.28%)

48.6 m (2.8 m) 4.54 m (0.72 m) 4.0 m (0.06 m) 3.4 h (9.24 m)
Adult - 84.6% (0.37%) 84.78% (0.4%) 84.65% (0.83%)
Income - 6.65 m (1.2 m) 6.52 m (0.14 m) 7.5 h (14.3 m)

51

4.5.6 Scaling

As we can see in Table 4.2, LMKL and C-LMKL run very slowly as the data complexity

increases (dimensions or number of points), and the primary bottleneck is the repeated

invocation of an SVM solver. As described above, we replaced the SVM solver with a

single-kernel version of MWUMKL and studied the resulting performance.

Table 4.3 summarizes the results of this experiment. As we can see, for both LMKL and

C-LMKL, using a scalable SVM solver greatly improves the running time of the algorithm.

In fact as we can see, the methods using LibSVM fail to complete on certain inputs, whereas

the methods that use MWUMKL do not. We note that MWUMKL uses a parameter ε

which is the acceptable error in the duality gap of the SVM optimization program. Higher

ε values translate to more iterations, and accuracy can often improve (up to a point) with

lower ε. Unless stated otherwise, we use ε = 0.01. Note that for this ε, accuracy does drop

significantly in certain cases.

The case of SWMKL is a little more interesting. For smaller datasets the basic method

works quite well, and indeed outperforms any enhancement based on using MWUMKL.

However, this comes at a price: the SWMKL method requires a lot of memory to solve the

Table 4.3: Accuracies and running times for various datasets and methods, using
MWUMKL as the SVM solver. Numbers in parentheses are standard deviations. For the
first four datasets, numbers are averaged over 100 runs. For the last three larger datasets,
numbers are averaged over 20 runs. Values which are significantly superior to that of other
methods are typeset in bold.

LMKL SWMKL LD-MKL C-LMKL

Breast 97.08 % (1.1 %) 96.42% (1.6%) 93.4% (2.2%) 90.4% (2.4%)
Cancer 0.18 s (4.3 ms) 0.18 s (1.2 ms) 0.63 s (9.3 ms) 5.6 s (122 ms)
Diabetes 73.19% (3.39%) 76.63% (2.9%) 77.0% (3.4%) 71.1% (10%)

0.27 s (18 ms) 0.29 s (3.8 ms) 0.48 s (46 ms) 7.2 s (32 ms)
German- 70.07% (3.1%) 72.2% (3.29%) 73.0% (3.8%) 73.4% (4.1%)
Numeric 0.63 s (43 ms) 0.62 s (10.2 ms) 1.0 s (55 ms) 16.3 s (101 ms)
Liver 56.82% (6.53%) 59.63% (10.47%) 58.8% (8.0%) 49.7% (6.3%)

0.13 s (5 ms) 0.11 s (3.4 ms) 0.3 s (6.5 ms) 1.45 s (106 ms)
Mushroom 99.87% (0.1%) 99.9% (0%) 99.9% (0.1%) 98.8% (0.24%)

24.4 s (0.36 s) 21.3 s (0.2 s) 53.0 s (0.2 s) 31.4 m (1.2 m)
Gisette 97.28% (0.4%) 69.96% (2.01%) 92.2% (0.8%) 90.26% (1.2%)

8.2 m (0.18 m) 8.91 m (0.44 m) 29.0 m (10 s) 28.5 m (53.1 s)
Adult 57.4% (5.31%) 83.96% (0.61%) 80.2% (0.8%) 84.65% (0.35%)
Income 9.4 m (0.6 m) 9.1 m (6.8 s) 12.3 m (14.3 s) 47.65 m (2.46 m)

52

final kernel SVM with a kernel formed by combining the base kernels. For smaller datasets,

this effect does not materially affect performance, but as we move to larger datasets like

Adult, the method starts to fail catastrophically. Figure 4.2 illustrates the memory usage

incurred by the three localized methods when not using MWUMKL and when using it.

As we can see, the memory grows polynomially with the size of input.

4.5.6.1 Stress-testing

Scaling LD-MKL to truly large datasets can present a challenge because we make use of

kernelized support-vector regression. There are several methods to address this problem

which we will not enumerate here, but are targets for future versions of our algorithm.

4.5.7 Support Points

We have argued earlier that localized MKL methods have the potential to generate

classifiers with comparable accuracy but fewer support points than global multiple kernel

methods. This fact was first observed by Gönen and Alpaydin [33]. We now present

detailed empirical evidence establishing this claim. We compare the different localized

●●
●

●

●
●

●

●● ●

●

●
●

●

●● ●

●

●
●

●

32 KB

1 MB

32 MB

1 GB

102.5 103 103.5 104 104.5

n

m
em

or
y

method

●

●

●

LibSVM

MWUMKL (16 kernels)

MWUMKL (2 kernels)

Figure 4.2: Minimum memory required (assuming double-precision floats) for LibSVM-
based and MWUMKL-based methods. LibSVM-based methods exclude those that use
only LibSVM’s standard kernels, such as LD-MKL, but include those that construct a
new kernel, such as LMKL, C-LMKL, and SWMKL. The values for n are taken from the
“Examples” column from Table 4.1.

53

kernel learning methods to UNIFORM (a MKL algorithm that merely takes an average

of all the kernels in its dictionary [23]), SPG-GMKL [40] (an iterative MKL solver that

uses the spectral projected gradient), and MWUMKL, run in its original form as an MKL

algorithm. Results are presented in Table 4.4. While we did not annotate the results with

accuracy numbers for ease of viewing, all methods have comparable accuracy (as Table 4.2

also indicates).

We observe that in all cases, the classifier using the fewest support points is always

one of the localized methods, and the differences are always significant. However, it is

not the case that a single local method always performs best. In general, LD-MKL (and

SWMKL) appear to perform slightly better, but this is not consistent. Nevertheless, the

results provide a clear justification for the argument that local kernel learning indeed finds

sparser solutions.

Table 4.4: Numbers of support points computed as a percentage of the total number of
points. Numbers in parentheses are standard deviations over 100 iterations. Values which
are significantly superior to those of other methods are typeset in bold.

Global methods
MWUMKL UNIFORM GMKL

Breast 21% (1.4%) 70.2% (1.9%) 15.1% (1%)
Diabetes 79.1% (1.7%) 70% (2%) 61.9% (1.2%)
German 81.7% (1.1%) 60.8% (1.6%) 68.4% (1.4%)
Liver 92.2% (1.6%) 89.6% (2.6%) 84.2% (1.9%)
Mushrooms 22.6% (0.1%) 96.4% (0.8%) 15.2% (0.2%)
Gisette 36.9% (0.0%) 99.4% (0.3%) 46.2% (0.3%)
Adult 40.4% (0.0%) 48.2% (0.2%) 41.7% (0.1%)

Localized Methods
SWMKL LD-MKL LMKL C-LMKL

Breast 11.4% (1%) 12.9% (1.1%) 38% (3.5%) 10.8% (1.1%)
Diabetes 55.2% (1.3%) 56.4% (1.3%) 58% (1.7%) 73.9% (10%)
German 52.2% (3.3%) 43.4% (2.4%) 89.2% (2.8%) 99.8% (0.3%)
Liver 82.2% (1.7%) 70.2% (7.3%) 63.1% (2.3%) 88.1% (2.7%)
Mushrooms 4.3% (0.2%) 8.1% (0.8%) 1.9% (0.1%) 4.0% (0.3%)
Gisette 20.8% (0.3%) 31.9% (0.2%) 32.3% (0.8%) 26.3% (0.5%)
Adult 35.6% (0.2%) 37.4% (0.2%) - 35.4% (0.2%)

PART II

DISTRIBUTION-BASED KERNEL LEARNING

CHAPTER 5

CONTINUOUS KERNEL LEARNING

In this chapter, we describe a new approach to kernel learning that establishes con-

nections between the Fourier-analytic representation of kernels arising out of Bochner’s

theorem [14] and a specific kind of feed-forward network using cosine activations. We

analyze the complexity of this space of hypotheses and demonstrate empirically that our

approach provides scalable kernel learning superior in quality to prior approaches.

5.1 Introduction
In this chapter, we describe continuous kernel learning (CKL), a new way of tackling this

problem by establishing and exploiting a connection to feed-forward networks. Working

within the Fourier-analytic framework for kernel learning, we propose to search directly

over the space of shift-invariant kernels instead of optimizing the parameters of a known

family of distributions. In doing so, though we lose the ability to isolate parameters of a

single learned kernel, we gain representability in terms of a nonlinear basis of cosines that

can be naturally interpreted as activations for a feed-forward network. This interpretation

allows us to deploy the power of backpropagation on this network to learn the desired

kernel representation. In addition, the generalization power of the cosine representation

can be established formally using machinery from learning theory: this also helps guide

the regularization that we use to learn the resulting kernel. We support these arguments

with a suite of experiments on relatively large datasets (tens of thousands of points, hun-

dreds of dimensions) that demonstrate that our learned kernels are more accurate than the

state-of-the-art multiple kernel learning (MKL) methods.

In summary, our main contributions are:

• We develop the CKL framework, a kernel learning method that learns an implicit

representation of a kernel. We show that we can interpret the learning task as a

56

feed-forward network. This allows us to utilize recent advances in optimization

technology from deep learning to train a classifier.

• We prove VC-dimension and generalization bounds for a single Fourier embedding,

which yields natural regularization techniques for CKL.

• We show via experiments that CKL outperforms existing scalable MKL methods.

5.1.1 Technical Overview

The starting point for our work is the representation of any shift-invariant kernel1 as

an infinite linear combination of cosine basis elements via Bochner’s theorem [14], as first

demonstrated by Rahimi and Recht [66]. This representation is typically used to generate

a random low-dimensional embedding of the associated Hilbert space.

If we move away from a random low-dimensional embedding and embrace the entire

distribution that we sample from, we reach infinite-width embeddings. Dealing with

infinite-width embeddings simply means that we consider the expectation of the embed-

ding over the distribution. Neal [59] linked infinite-width networks to Gaussian processes

when the distribution is Gaussian. Much later, Cho and Saul [21] applied the technique

to infinite-width rectified linear units (ReLUs), and showed a correspondence to a kernel

they called the arc-cosine kernel. Hazan and Jaakkola [39] extended this result further, and

analyzed the kernel corresponding to two infinite layers stacked in series. In all of this, a

specific distribution is chosen in order to obtain a kernel.

In our work, we return to the infinite representation provided by Bochner’s theorem [14].

Rather than picking a specific distribution over weights, we learn a distribution based on

our training data. This effectively means we learn a representation of a kernel. While we

cannot learn an infinite-width embedding directly, since the space of functions is itself

infinite, we are able to construct approximate representations from a finite number of

Fourier embeddings.

1A kernel κ(x, y) expressible as κ(x, y) = k(x− y).

57

5.2 Continuous Kernel Learning
5.2.1 Bochner’s Theorem

A couple observations must be made in order for Bochner’s theorem [14] to be relevant

to our setting. First, we observe that (for the purposes of this chapter) a positive-definite

(p.d.) function k(·) is a p.d. kernel κ(·, ·) when κ(x, x′) = k(x− x′) and k is even (k(δ) =

k(−δ)). A kernel of this type is a shift-invariant kernel. Examples include the Gaussian or

RBF kernel (e−‖x−x′‖2/σ2
) and the Laplacian kernel (e−λ‖x−x′‖).

Next, any non-negative measure µ : Rd → R+ can be converted to a probability

distribution if we normalize by Z =
∫

Rd dµ. Since Fourier transforms are linear, we can

normalize the kernel by the same factor Z and maintain the equivalence. So without loss

of generality, we can assume that the measure µ is a probability measure. This equivalence

between shift-invariant kernel and distribution is important in the rest of this chapter.

5.2.2 Fourier Embeddings

Rahimi and Recht [66] built on Bochner’s theorem [14] by observing that the Fourier

transform of µ is also an expectation:

k(x− x′) =
∫

Rd
eiω>(x−x′) fµ(ω) dω = Eω[ζω(x)ζω(x′)],

if ζω(x) = eiω>x and ω ∼ Dµ, whereDµ is the probability distribution over Borel sets on Rd

with measure µ. This shows that ζω(x)ζω(x′) is an unbiased estimate of k(x− x′). Because

k(x− x′) is real, we know that Eω[ζω(x)ζω(x′)] has no imaginary component. A straight-

forward Chernoff-type argument [see 58, Ch. 4] shows that averaging ζω(x)ζω(x′) over D

samples of ω produces a bound on the error of the estimate that diminishes exponentially

in D. The lifting map then becomes Φ(x) =
√

1/D(ζω1(x), . . . , ζωD(x)). The inner product

〈Φ(x), Φ(x′)〉 is obviously the desired average.

We can avoid complex numbers by using zω,b(x) =
√

2 cos(ω>x+ b) with ω ∼ Dµ and

b ∼ U[0, π), which offers the same unbiased estimate (see [66]). To see this, consider:

Eω,b[zω,b(x)zω,b(x′)] = Eω,b[2 cos(ω>x + b) cos(ω>x′ + b)]

= Eω,b[cos(ω>(x + x′) + 2b)] + Eω[cos(ω>(x− x′))],

from well-known trigonometric identities [1]. Other identities [1] give us

58

Eω,b[cos(ω>(x + x′) + 2b)] = Eω[cos(ω>(x + x′))]Eb[cos(2b)]

− Eω[sin(ω>(x + x′))]Eb[sin(2b)] = 0.

Since the expectation is over an entire period of both functions, both Eb[cos(2b)] and

Eb[sin(2b)] are zero. So

Eω,b[zω,b(x)zω,b(x′)] = Eω[cos(ω>(x− x′))]

=
1
2

Eω[eiω>(x−x′)] +
1
2

Eω[e−iω>(x−x′)]

=
1
2

k(x− x′) +
1
2

k(x′ − x) = k(x− x′).

The lifting map in this case is Φ(x) =
√

2/D(zω1,b1(x), . . . , zωD ,bD(x)). For more infor-

mation about this equivalence, see Sutherland and Schneider [71] and Chen and Phillips

[19].

In this work, we will refer to these maps (of the real or complex type) as Fourier embed-

dings. In [66], these embeddings are called random Fourier features, because they are selected

at random from the distribution that is Fourier-dual to the approximated kernel. We will

demonstrate that Fourier embeddings of this type need not be selected at random, and can

in fact be optimized.

5.2.2.1 Our Approach

Our approach is most similar to that in Băzăvan et al. [17]. Like the authors of [17],

we recognize that we can optimize the parameters {ωi} of a Fourier embedding. Băzăvan

et al. decompose ωi as follows:

ωi = σi ◦ h(ui),

where σi is the parameter of a shift-invariant kernel, h is an element-wise nonlinear func-

tion (essentially an inverse quantile function), and ui is a sample drawn from a multivariate

uniform distribution (cube). The procedure is to optimize σi and periodically resample ui.

This has the advantage of being able to represent the kernel with its parameter σi, which

adds to clarity, but the kernel must be one of a particular class of shift-invariant kernels

that decomposes into this form. A Gaussian kernel, however, does decompose this way.

In contrast, we sample the vectors ωi from the distribution Dµ, and then optimize

them directly. The weights {ωi} become different vectors {ω′i} ⊂ Rd – and are now very

59

unlikely to be drawn i.i.d. from the distribution Dµ anymore. As in prior approaches, by

learning the embeddings, we learn the kernel, because the Bochner equivalence between

distributions and kernels guarantees this. We use backpropagation to learn the weights,

avoiding the need to resample at every step, and allowing us to take advantage of recent

neural network technology to perform scalable optimization. While other approaches

focus on decomposing the representation of the kernels into individual kernel components

and learn their parameters, we avoid this and focus only on producing the final weights

ω′i . We lose the clarity and sparsity of individual kernel parameters but gain the flexibility

of learning a representation of a shift-invariant kernel free of individual base kernels, and

recent technology allows us to do this training quickly.

For brevity, we refer to the d×D matrices W (for the {ωi}) and W′ (for the {ω′i}), since

there are D samples from Rd.

5.2.3 Generalization Bounds in Fourier Embeddings

We now examine the capacity of this class of kernels by analyzing its VC-dimension.

Note that the cosine function complicates this analysis since it has nontrivial gradient

almost everywhere.

Fortunately, we can exploit an observation already well-known in kernel learning that

a narrow kernel function, for example, a Gaussian kernel with a small variance, is more

likely to overfit (and therefore have higher capacity). This is because a narrow kernel

function only allows the model to examine a very small range around each point, so a

new point is unlikely to be affected by the model at all. Because the kernel is the Fourier

transform of a distribution, a narrow kernel function corresponds to a distribution with

high variance – using the same example, a Gaussian kernel with variance parameter σ2 is

the Fourier transform of a Gaussian distribution with variance 1/σ2. So a small variance in

the kernel corresponds to a high variance in the distribution, and vice-versa. In fact, we can

demonstrate that if the norm of the embedding parameter ω is high, then this translates to

higher capacity.

Let z(x) = e2πix, Re(z) and Im(z) be the real and imaginary components of z, respec-

tively, let [a..b] refer to the set of integers between a and b, inclusive (i.o.w., {n ∈ Z | a ≤
n ≤ b}), and let 1P(x) be the indicator (or characteristic) function of P : R→ {0, 1}.

60

Definition 3. An (ω, β, d)-range is the set

{x ∈ Rd | Im(z(ω · x + β)) ≥ 0, ‖x‖ < 1},

where d ≥ 1 is an integer, ω ∈ Rd, and β ∈ [0, 1).

Definition 4. Let Gd(R) be the set of all (ω, β, d)-ranges such that ‖ω‖2 ≤ R.

Lemma 3. The decision function 1Im(z(wx+β))≥0 induces a unique binary labeling for the set x ∈
{1/2i}n

i=1 for every integer value of w ∈ [1..2n], and any β ∈ (0, 2−(n+1)).

Proof. For any integer w ∈ [1..2n] and i ∈ [1..n], choose the binary label as 0 if z(w/2i + β)

lands in the upper half-plane of C, and 1 if the lower half-plane. The label can be read

as the most significant fractional digit of the binary representation of w/2i, as long as

β ∈ (0, 2−(n+1))2. The labeling is then unique for integer values of w up to 2n.

Clearly, every (ω, β, d)-range corresponds to a binary classifier and the range space

(Rd,Gd(R)) is the hypothesis space of interest. We denote the unbounded range space

∪RGd(R) by Gd(∞).

Theorem 4. The VC-dimension of the range space (Rd,Gd(R)) is Θ(max{d log R, d + 1}).

We prove Theorem 4 in two parts.

Lemma 5. The VC-dimension of (Rd,Gd(R)) is at least d max{blog2 Rc, 1}+ 1.

Proof. Let n = blog2 Rc, for R ≥ 2. We now construct a set of dn points. Along each axis of

Rd, place n points with corresponding coordinate from the set {1/2i}n
i=1. From Lemma 3,

we know that we can induce a binary labeling on every axis-restricted set, using integers

[1..2n]. Given ω ∈ [1..2n]d, each ωj ∈ [1..2n] will give a unique labeling to the points on

axis j ∈ [1..d], independent of any other axis j. Therefore, we can uniquely label the whole

set of dn points, for all possible labelings.

To add one more point to the set, we select a point c, the d-dimensional vector with

all coordinates equal to a constant c, and make sure that we can find values β+ and β−

so that 〈c, ω〉+ β+ ≥ 0 and 〈c, ω〉+ β− < 0, independently of ω. Observe that 〈c, ω〉 =

2To avoid ambiguity, we require β > 0, to prevent z(w/2i) from landing on the real axis when 2i divides w.

61

c ∑j ωj, and that d ≤ ∑j ωj ≤ d2n. For 〈c, ω〉 + β− < 0 we need that β+ < −〈c, ω〉 for

all ω, since the choice of β must be independent of ω. This means that first, c < 0 since

β− > 0 and ∑j ωj > 0. Then −cd ≤ −〈c, ω〉 ≤ −cd2n, so we need to pick β+ < −cd.

Similarly, we require β+ ≥ −cd2n, and since β+ < 2−(n+1), we need −c < 1/d2−(2n+1).

Set c = −1/d22n+2, β+ = 2−(n+2), and β− = 2−(2n+3). We can now uniquely label dn + 1

points for all possible labelings, when R > 2.

Regardless of the value of R, there is always a unique labeling of d + 1 points induced

by the range space, since we can restrict to a ball small enough that Im(z(ωx + β)) =

sin(2π(ωx + β)) is monotonic for appropriate values of β. Within the ball, the range space

is effectively the range of half-spaces, which has VC-dimension d + 1.

Corollary 6. The VC-dimension of the range space (Rd,Gd(∞)) is unbounded.

To prove the corresponding upper bound, we use the notion of the shatter function

of (Rd,Gd(R)) [38]. For a positive integer n, the shatter function of a range space is the

maximum highest number of subsets induced by the range space on any set of n points

Xn. That is, any rangeR induces a subset of Xn simply by the intersectionR∩Xn, and the

shatter function counts all unique subsets of this type.

Lemma 7. The shatter function of (Rd,Gd(R)) is O(Rdnd+1).

Proof. We can first observe that ‖ω‖2 ≤ R implies that ‖ω‖∞ ≤ R. This implies that

|ωj| ≤ R for every j ∈ [1..d]. Treating each coordinate separately this way, each term in

〈ω, x〉+ β contributes a factor in the growth function.

For a fixed ω, the number of subsets of a set of n points selected by (ω, β, d)-ranges is

O(n), because as β changes, at most one point exits or leaves the upper half-plane (because

the points all travel at the same speed around the unit circle).

For fixed β, and fixed ω save for some coordinate ωj, on the other hand, how often a

point enters or leaves the upper half-plane as ωj varies in (0, R] depends upon the value

of xj. For higher values of xj, the mapped point travels more rapidly. In fact, for x = 1,

z takes R revolutions around the circle, and so enters and exits the upper half-plane 2R

times. The number of subsets is bounded by

62

n

∑
i=1

2R|xi| = 2R
n

∑
i=1
|xi| ≤ 2Rn.

We take the absolute value because a negative xi simply changes the direction of travel of

z(ωjxi + β). Everything else remains the same. For ω and β varying independently, we

now have the bound stated in the lemma.

Lemma 8. The VC-dimension of (Rd,Gd(R)) is O(d log R).

Proof. Follows directly from the relationship between the shatter function and VC dimen-

sion [38].

With Lemma 5 and Lemma 8, we have proven Theorem 4. The VC dimension also

gives us a generalization bound, due to Bartlett and Mendelson [8]:

Theorem 9. Let F be a class of ±1-valued functions defined on a set X . Let P be a probability

distribution on X × {±1}, and suppose that (X1, Y1), . . . , (Xn, Yn) and (X, Y) are chosen inde-

pendently according to P. Then for any positive integer n, w.p. (1− δ) over samples of length n,

every f ∈ F satisfies

P(Y 6= f (X)) ≤ 1
n

n

∑
i=1

1Yi 6= f (Xi) + O

(√
max{d log R, d + 1}

n
+

√
ln 1/δ

n

)

5.2.4 Regularization

Theorem 4 and Theorem 9 immediately suggest a broad regularization strategy: low-

ering R will lower the sample complexity of the hypothesis class. Intuitively, R places an

upper bound on the variance of the distribution dual to the kernel. The signal equivalent

to variance is bandwidth, which is dual to frequency under the Fourier transform. Effectively

then by limiting the variance of the distribution, we limit the frequency of the kernel. We already

know this to be a desirable property of kernels — kernels with small effective support

produce models that generalize poorly. By forcing our kernel to have broad support, we

know that it will generalize better.

At least three regularization techniques then suggest themselves:

• First, we can limit the norm of the Fourier weights with weight decay (a.k.a. L2

regularization). This is a fairly “smooth” way to control the capacity, because in any

63

iteration, all ω will be scaled by the same amount. This method tends to have a

conservative effect on the capacity, since any large change in any one ω will scale all

the ωs down.

• Alternatively, we can simply cap the norm of each Fourier weight vector to some

constant at each round of the training. This is “harsher” than weight decay, because

technically, this technique introduces a discontinuity in the distribution. In reality,

this is an effective and simple technique.

• We can further control the initial capacity by setting the variance of the initializing

distribution. By not setting variance too large, the frequency of the initial kernel will

be limited.

5.3 From an Embedding to a Feed-forward Network
We now return to the single Fourier embedding

zω,b =
√

2 cos(ω>x + b)

If we fix an input x, then we can view the mapping zω,b as a neuron with a cosine activation

function and biases of the form b ∈ [0, 2π). We call this type of neuron a cosine neuron. Such

a neuron, with a cutoff to ensure zero support outside an interval, was introduced in [29].

We impose no such cutoff in this work.

Consider a (hidden) layer of cosine neurons, h0, each with associated weight vector ωj.

Each of these weights can be viewed as a sample from some distribution, and therefore,

the entire ensemble is a (dual) representation of some shift-invariant kernel (by Bochner’s

theorem [14]). We can then write the associated classifier for such a combination. Let us

denote the bias vector by bh0 (1× D) and the matrix of all the weight vectors ωj by Wh0

(d× D). We add a softmax layer for classification, o, with bias bo (1× {# of classes}) and

weights Wo (D × {# of classes}). With logarithmic loss to measure the alignment of the

classifier with ground truth, we can write:

`log(softmax(cos(xiWh0 + bh0)Wo + bo), yi),

where `log is the log loss, and cos is taken elementwise.

64

What we now have is a standard (shallow) 2-layer network that we can train using

backpropagation and stochastic gradient descent.

5.4 Experiments
We have designed our experiments to answer the following questions: (1) Does allow-

ing the learning algorithm to pick an arbitrary kernel improve performance over standard

MKL techniques that are only allowed to select from a fixed library of kernels? (2) How

does the learning algorithm for CKL adapt to large datasets and higher dimensions?

5.4.1 MKL vs. CKL on Small Datasets

Since CKL is proposed as an alternative to MKL, we compare CKL to two scalable MKL

algorithms, namely SPG-GMKL [40] and MWUMKL [57].

5.4.1.1 Datasets

All of the datasets used for the experiments are taken from the libsvm repository3. See

Table 5.1 for details of the datasets.

The data for Adult and Mushroom datasets consist of binary features (one-hot repre-

3https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html

Table 5.1: Summary of datasets

LibSVM datasets Features Examples

Liver 6 345
Diabetes 8 768
Cod-RNA 8 59535
Breast Cancer 10 683
German-Numeric 24 1000
Mushroom 112 8192
Adult 123 32561
Gisette 5000 6000

Million Song Datasets (MSD) Features Examples Notes

Genre 1 182 37, 037 “Classic pop and rock” vs.
“folk”

Genre 2 182 59, 485 “Classic pop and rock” vs. ev-
erything else

Year pred. 90 515, 345 Prior to year 2000 vs. after
year 2000

65

sentations of categorical features), so no scaling was applied. Features were scaled to the

range [-1, 1] for other datasets.

5.4.1.2 Experimental Procedure, MKL

For MKL experiments, we used the Scikit-Learn Python package [64] for much of the

testing infrastructure. For testing with MKL methods, the training data are split randomly

into 75% training and 25% validation data. The random splits were repeated 100 times for

all sets except Mushroom, Gisette, and Adult, which received 20 splits for considerations

of time. The C parameter was selected through cross validation and for MWUMKL, the

ε parameter was chosen to be 0.005, to achieve high accuracy while allowing all of the

experiments to complete (the number of iterations of the algorithm in [57] is proportional

to 1/ε). We use two kernels: a linear kernel and a Gaussian kernel. For the Gaussian kernel,

a wide range of γ are tried and the the best accuracy observed is used in the results.

5.4.1.3 Experimental Procedure, CKL

For CKL experiments, we use the same architectural setup described in Section 5.3

– that is, a hidden layer h0 that accepts inputs from the dataset and outputs a Fourier

embedding, and a softmax layer o that accepts input from the Fourier embedding from

h0 and outputs the prediction of the model. The output of o is evaluated against ground

truth using log loss (i.e., multinomial regression), and we attempt to minimize the loss

with stochastic gradient descent (SGD) and the backpropagation algorithm.

The same test/train split as in the MKL experiments is applied, and additionally, the

training portion is split further into 75% training and 25% validation. We apply early

stopping and momentum, and random searches for the following hyperparameters: D

(the width of h0), σ (the initial variance of the weights of h0), and ` (the learning rate).

Training was stopped if the validation objective did not decrease within 100 epochs (“early

stopping”) and was otherwise permitted to run for up to 10, 000 epochs. Momentum was

applied from the first epoch with a value of 0.5 that was increased to 0.99 over the course

of 10 epochs.

The parameters of the model, that is, the weights of the connections of the network,

were initialized randomly. The weights of h0 were sampled from a normal distribution

with variance σ, and the weights of o were selected uniformly from the interval [−0.1, 0.1].

66

See Table 5.2.

Values for D were drawn from {2i | i ∈ [0..9]}, except for Gisette, where the selection

is from {2i | i ∈ [0..14]}. Values for σ were selected from {2i | i ∈ [−6..0]}. Finally, ` was

sampled from LU[10−5, 0.2)4. See Table 5.3. 100 models with random hyperparameters

were trained, and then the one with the highest performance was chosen and validated

with 100 random splits (as described in the previous paragraph).

Note that while we did test both weight decay and norm capping (see Section 5.2.4), the

results were inconclusive so they are not reported here.

5.4.1.4 Results

The results are shown in Table 5.4. CKL is not different in any significant capacity from

either SPG-GMKL or MWUMKL on very small datasets. Letting the learning algorithm

pick an arbitrary kernel improves performance over standard MKL techniques that only

choose a mixture of kernels. Additionally, we see that CKL adapts to large datasets and

higher dimensions better than MKL.

5.4.2 MKL vs. CKL on Million Song Datasets

In this section, we compare MKL methods with CKL on the Million Song Dataset [11].

The Million Song Dataset consists of audio features and metadata of one million contem-

porary popular music tracks. For the experiments, we utilized three different subsets of

the Million Song Dataset, all binary. The features are the average and covariance of the

pitch and timbre vectors for each track:

Genre 1: The two most common genres in Million Song Dataset - “classic pop and rock” and

4A random variable X is drawn from LU[a, b] if X = eY , where Y ∼ U[ln(a), ln(b)).

Table 5.2: Parameters used in CKL experiments. Note that σ is a hyperparameter of the
model.

Parameters Dimensions Initial Distribution

Wh0 d× D N (0, σ2)
bh0 1× D U[0, π)
Wo D× 2 U[−0.1, 0.1]
bo 1× 2 constant 0

67

Table 5.3: Hyperparameters used in CKL experiments.

Hyperparameter Name Values

Width of h0 D 2i, with i ∼ [0..9] (except
Gisette, where i ∼ [0..14])

Variance of elements in Wh0 σ2 2i, with i ∼ [−6..0]
Learning rate ` LU[10−5, 0.2)

Table 5.4: Mean accuracies (standard deviations) for various datasets on MKL and CKL.
If a mean, minus the standard deviation, is greater than all other means plus standard
deviations in the row, then the mean is bold. Note that for all MSD tests, the difference is
more than three standard deviations.

Small Datasets SPG-GMKL MWUMKL CKL

Liver 67.78% (4.78%) 59.34% (6.04%) 66.45% (6.19%)
Diabetes 77.06% (2.66%) 75.59% (2.92%) 76.08% (2.95%)
Cod-RNA 87.31% (0.13%) 72.42% (7.30%) 85.7% (1.14%)
Breast Cancer 97.14% (1.20%) 91.89% (2.22%) 96.87% (1.22%)
German-Numeric 73.05% (3.25%) 74.40% (3.01%) 76.14% (2.57%)
Mushroom 99.80% (0.08%) 99.93% (0.04%) 100% (0.0042%)
Adult Income 83.94% (0.28%) 76.90% (0.82%) 84.80% (0.35%)
Gisette 95.15% (0.53%) 93.50% (0.72%) 96.90% (0.52%)

Million Song Dataset SPG-GMKL MWUMKL CKL

Genre 1 77.62% (0.36%) 68.14% (1.06%) 81.68% (0.39%)
Genre 2 69.12% (0.33%) 53.02% (0.55%) 74.16% (0.36%)
Year Pred. 75.38% (0.1%) 57.72% (1.64%) 77.57% (0.11%)

“folk.” The tracks which have both genres as tags are removed to avoid confusion.

Genre 2: The ten most common genres in the Million Song Dataset. Since the “classic pop

and rock” genre has significantly more tracks than any other genre, “classic pop and

rock” is considered as one class and everything else together as another class.

Year Prediction: Taken from the UCI Machine Learning Repository. All tracks prior to the

year 2000 are considered as one class and all tracks after and including the year 2000

are considered as the other class. The dimensions of the dataset are summarized in

Table 5.1.

68

5.4.2.1 Results

The results are shown in Table 5.4. CKL is clearly superior to the scalable MKL methods

that we tested against, adding to the evidence that higher-dimensional and larger datasets

can benefit from our technique.

5.4.3 MKL vs. CKL on Images

We compare MKL and CKL on CIFAR10. CIFAR10 [47] is a labeled image dataset con-

taining 60,000 1,024-dimensional (32× 32) images and 10 classes used extensively for test-

ing image classification algorithms. While image classification is an important benchmark

for neural networks, we wish to point out that our objective is not to classify the CIFAR10

dataset better than all other previous techniques. Instead, we wish to provide comparisons

between the methods described in this chapter on a large and very challenging task using

a simple convolutional neural architecture.

5.4.3.1 Preprocessing

We first centered the CIFAR10 training set by mean, and then used Pylearn2 [35] to

apply two transformations: global contrast normalization [22] and ZCA whitening [9]5.

We applied the same transformations computed for the training set to the testing set.

5.4.3.2 Feature Extraction

For MKL, we used a convolutional neural network (CNN) [51] to learn a representation

from the data. In total, we trained 100 models and we extracted the features from the

model with the best performance. All of the models had the form convReLU → poolmax →
fcReLU → softmax where convReLU is a convolutional layer using ReLU nonlinearities,

poolmax is a max-pool layer, fcReLU was a fully-connected layer using ReLU nonlinearities,

and softmax was a softmax layer.

We trained the models with (1) momentum, initialized to 0.5 and increased to 0.99 over

the first 100 epochs, and (2) early stopping: we set aside the last 10, 000 samples of the

5PCA whitening attempts to decorrelate features and normalize singular values (“whitening”) of the
original data by rotating the data by singular vectors, and then normalizing singular values. ZCA whitening,
in contrast, attempts to do the same, but make the resulting data as close to the original as possible, in a
least-squares sense. The ZCA transformation is simply to multiply by the inverse square root of the covariance
matrix of the data.

69

training set as a validation set for early stopping, and trained the models for at most 5, 000

epochs. We initialized the weights of all layers by selecting values uniformly at random

from the range [−0.01, 0.01]. The parameters of the best performing model were as follows:

(1) the convolutional layer (with ReLU activations): a 5 × 5 kernel with 1 × 1 stride, 32

channels, a max kernel norm of 1.8, and cross channel normalization with α = 3.2× 10−4

and β = 0.75, (2) the max pooling layer: a 3 × 3 kernel with 2 × 2 stride, (3) the fully

connected layer: 1, 000 rectified linear units, and (4) the softmax layer: one output for each

CIFAR10 class. Each sample of CIFAR10 was passed through the CNN and the activations

of the fully connected layer were recorded as the new representation.

5.4.3.3 CIFAR10 with MKL

For MKL experiments, the testing infrastructure and the experimental procedures are

similar to the experimental procedure of Section 5.4.1 except for the following details: (1)

One-vs-one multiclass strategy is used for the classification task, (2) Random 75% of the

training data is used for training and tested on the standard test data. The runs were

repeated 20 times, and (3) We used two Gaussian kernels, one with γ = 1 and the other

with a range of γ from 2−7 to 27. The best accuracy observed is shown in Table 5.5.

5.4.3.4 CIFAR10 with CKL

For comparison with MKL, we trained a network of the form convReLU → poolmax →
fcReLU → fccos → softmax. A CKL model of this form uses the same structure as the CNN

used for the MKL/CKL experiments (defined in Section 5.4.3.2), up to and including the

fully connected layer of rectified linear units. Instead of a softmax layer, the units of the

fully connected layer were connected to a CKL model with 1, 000 hidden units (untuned).

The primary difference between this model and MKL trained on features extracted

from a CNN (see Section 5.4.3.3) is that this model is trained all at once, while in the MKL

experiments, the CNN used for feature learning and the MKL model were trained sepa-

Table 5.5: Accuracy for CIFAR10 on MKL and CKL with CNN.

SPG-GMKL MWUMKL CKL+CNN

44.43% (0.57%) 48.2% (0.41%) 67.77% (0.61%)

70

rately. This end-to-end learning allows the features of each layer to adapt to the features

that appear later in the network. It is also important to note that the MKL experiments

were trained on a one-vs.-one basis, while the CKL model uses multinomial (softmax)

regression with log loss.

5.4.3.5 Experimental Procedure

The models in these experiments were trained using stochastic gradient descent for a

maximum of 1, 000 epochs with early stopping and momentum. The initial momentum

rate was 0.5 and was adjusted from the first epoch to 0.99 over the first 500 epochs of the

training.

5.4.3.6 Results

The CKL model outstrips the MKL methods by a wide margin. We conjecture that this

is due to two effects: (1) the end-to-end training allows for better adaptation in the training

process and (2) the search space of kernels is much larger. The first effect demonstrates that

CKL is more adaptable than MKL in these settings. It is also important to note that training

is a crucial component for CKL models when operating on large datasets. For CIFAR10,

evaluating any random model upon initialization yielded an accuracy of only 10.1% with

standard deviation of 0.235%. In contrast, evaluating random models on smaller datasets

frequently yields accuracies that are better than chance.

5.4.3.7 CIFAR10 with Two Layer ConvNets

One might ask whether stacking two cosine layers has any beneficial effect, since stack-

ing two cosine layers is similar to composing two lifting maps, which if defined, yields a

kernel. Zhuang et al. [87] construct an algorithm specifically for the composition of two

kernels – essentially layering the kernels. Lu et al. [54] discuss extensions to [66] that

cover products, sums, and compositions of kernels. Since these are based on the sampling

methodology of [66], there is a direct analogy to composing two cosine layers (fixed, in

this case). We did not observe significant improvement in accuracy when we employed

combinations of two cosine layers. One possible explanation is that since the composition

of a kernel is itself a kernel, it can be argued that optimizing a network that contains two

consecutive cosine layers accomplishes no more than doing so with one cosine layer.

CHAPTER 6

CONCLUSION

We have explored just a few aspects of kernel learning – optimization, localization, and

distributional. We have demonstrated that kernel learning continues to be a rich area for

research.

6.1 Summary of Contributions and Future Directions
6.1.1 Multiplicative Weight Updates-MKL

We presented a simple, fast, and easy to implement algorithm for multiple kernel

learning (MKL). Our proposed algorithm develops a geometric reinterpretation of kernel

learning and leverages fast MMWU-based routines to yield an efficient learning algorithm.

Detailed empirical results on data scalability, kernel scalability, and with dynamic kernels

demonstrate that we are significantly faster than existing legacy MKL implementations

and outpeform LibLinear with Nyström kernel approximations (LIBLINEAR+) as well as

uniformly weighted combination of kernels (UNIFORM).

Our current results are for a single machine. One area of current research has been

to add parallellization techniques to improve the scalability of MWUMKL over datasets

that are large and use a large number of kernels. The MWUMKL algorithm lends itself

easily to the bulk synchronous parallel (BSP) framework [72], as most of the work is done

in the loop that updates Gα (see the last line of the loop in Algorithm 6). This task can

be “sharded” for either kernels or data points, and scalability of O(mn) would not suffer

under BSP. Since there are many BSP frameworks and tools in use today, this is a natural

direction to experiment.

6.1.2 Localized Kernel Learning

We analyzed several localized kernel learning (LKL) algorithms, and developed a uni-

fication of the ideas that they contain. We then developed a new algorithm based upon

72

those ideas that is efficient and accurate. We also analyzed the geometry of unified LKL

reproducing kernel Hilbert spaces (RKHSs), and empirically supported the proposition

that LKL algorithms produce fewer support points.

Our current research in this area is to develop an extension to LD-MKL that performs

regression on data, not simply classification. While the extension is simple in theory, a few

caveats must be satisfied, such as choosing a method to measure “success.”

6.1.3 Continuous Kernel Learning

We depart from the support vector machine (SVM)-based kernel learning techniques

of the previous two sections and develop a framework of learning a kernel embedded in

a neural net with backpropagation. Importantly, we distinguish our results from other

Bochner’s theorem [14] work by proving a sample complexity bound for cosine learners,

and use this result to argue for several regularization techniques (which are vitally impor-

tant when using neural nets). We compare cosine nets to previous MKL results, and find

that our new technique is significantly superior, especially with respect to image data.

Future work is wide open in this area — as many techniques and approaches can

be tested against continuous kernel learning (CKL) as there are new techniques in deep

learning. Examples include applying cosine nets as part of recurrent neural networks or

generative adversarial networks. In addition, we have only begun to test various kinds of

data, and it would be interesting to see if data from realms that use Fourier mathematics,

such as signal processing, could benefit better from our technique.

DISSEMINATION OF THIS WORK

• A Geometric Algorithm for Scalable Multiple Kernel Learning

John Moeller, Parasaran Raman, Avishek Saha, and Suresh Venkatasubramanian

17th International Conference on Artificial Intelligence and Statistics (AISTATS)

Reykjavı́k, Iceland; 2014

• A Unified View of Localized Kernel Learning

2016 SIAM International Conference on Data Mining (SDM)

John Moeller, Sarathkrishna Swaminathan, and Suresh Venkatasubramanian

Miami, Florida, USA; May 2016

• Continuous Kernel Learning

2016 European Conference on Machine Learning and Principles and Practice of Knowl-

edge Discovery (ECMLPKDD)

John Moeller, Vivek Srikumar, Sarathkrishna Swaminathan, Suresh Venkatasubra-

manian, and Dustin Webb

Riva di Garda, Italy; September 2016

REFERENCES

[1] Milton Abramowitz and Irene A Stegun. Handbook of mathematical functions: with
formulas, graphs, and mathematical tables, volume 55. Courier Corporation, 1964.

[2] E. D. Andersen and K. D. Andersen. The MOSEK interior point optimization for linear
programming: an implementation of the homogeneous algorithm, pages 197–232. Kluwer
Academic Publishers, 1999.

[3] Andreas Argyriou, Raphael Hauser, Charles A. Micchelli, and Massimiliano Pontil. A
DC-programming algorithm for kernel selection. In ICML, Pennsylvania, USA, 2006.

[4] N. Aronszajn. Theory of reproducing kernels. Transactions of the American Mathematical
Society, 68(3):337–404, 1950.

[5] Sanjeev Arora and Satyen Kale. A combinatorial, primal-dual approach to semidefi-
nite programs. In STOC, pages 227–236, New York, NY, USA, 2007. ACM.

[6] Özlem Aslan, Xinhua Zhang, and Dale Schuurmans. Convex deep learning via
normalized kernels. In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and
K. Q. Weinberger, editors, NIPS, pages 3275–3283. Curran Associates, Inc., 2014.

[7] Francis R. Bach, Gert R. G. Lanckriet, and Michael I. Jordan. Multiple kernel learning,
conic duality, and the SMO algorithm. In ICML, pages 6–13, New York, NY, USA,
2004. ACM.

[8] Peter L. Bartlett and Shahar Mendelson. Rademacher and Gaussian complexities:
Risk bounds and structural results. JMLR, 3:463–482, March 2003.

[9] Anthony J. Bell and Terrence J. Sejnowski. Edges are the ‘independent components’
of natural scenes. In M. C. Mozer, M. I. Jordan, and T. Petsche, editors, NIPS, pages
831–837. MIT Press, 1997.

[10] Kristin P. Bennett and Erin J. Bredensteiner. Duality and geometry in SVM classifiers.
In ICML, pages 57–64, San Francisco, CA, USA, 2000. Morgan Kaufmann Publishers
Inc.

[11] Thierry Bertin-Mahieux, Daniel P. W. Ellis, Brian Whitman, and Paul Lamere. The
million song dataset. In ISMIR, 2011.

[12] Liefeng Bo, Xiaofeng Ren, and Dieter Fox. Kernel descriptors for visual recognition.
In J. D. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel, and A. Culotta, editors,
NIPS, pages 244–252. Curran Associates, Inc., 2010.

[13] Liefeng Bo, K. Lai, Xiaofeng Ren, and D. Fox. Object recognition with hierarchical
kernel descriptors. In CVPR, pages 1729–1736, June 2011.

75

[14] Salomon Bochner. Lectures on Fourier integrals. Number 42 in Annals of Mathematics
Studies. Princeton University Press, 1959.

[15] Bernhard E. Boser, Isabelle M. Guyon, and Vladimir N. Vapnik. A training algorithm
for optimal margin classifiers. In Proceedings of the Fifth Annual Workshop on Computa-
tional Learning Theory, COLT ’92, pages 144–152, New York, NY, USA, 1992. ACM.

[16] S.P. Boyd and L. Vandenberghe. Convex optimization. Cambridge Univ Press, 2004.

[17] E. G. Băzăvan, F. Li, and C. Sminchisescu. Fourier kernel learning. In ECCV, 2012.

[18] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector ma-
chines. ACM TIST, 2:27:1–27:27, May 2011. Software available at http://www.csie.
ntu.edu.tw/~cjlin/libsvm.

[19] Di Chen and Jeff M Phillips. Relative error embeddings for the Gaussian kernel
distance. arXiv preprint arXiv:1602.05350, 2016.

[20] Radha Chitta, Rong Jin, Timothy C Havens, and Anil K Jain. Approximate kernel
k-means: Solution to large scale kernel clustering. In KDD, pages 895–903. ACM,
2011.

[21] Youngmin Cho and Lawrence K. Saul. Kernel methods for deep learning. In Y. Bengio,
D. Schuurmans, J. D. Lafferty, C. K. I. Williams, and A. Culotta, editors, NIPS, pages
342–350. Curran Associates, Inc., 2009.

[22] Adam Coates, Andrew Y. Ng, and Honglak Lee. An analysis of single-layer networks
in unsupervised feature learning. In AIStats, pages 215–223, 2011.

[23] Corinna Cortes. Invited talk: Can learning kernels help performance? In ICML,
Montreal, Canada, 2009.

[24] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine Learning, 20
(3):273–297, 1995.

[25] Corinna Cortes, Mehryar Mohri, and Afshin Rostamizadeh. Learning non-linear
combinations of kernels. In NIPS, Vancouver, Canada, 2009.

[26] Corinna Cortes, Mehryar Mohri, and Afshin Rostamizadeh. Two-stage learning
kernel algorithms. In ICML, pages 239–246, Haifa, Israel, 2010.

[27] Nello Cristianini, John Shawe-Taylor, André Elisseeff, and Jaz S. Kandola. On kernel-
target alignment. In Innovations in Machine Learning, pages 205–256. Springer, 2006.

[28] Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen Lin.
LIBLINEAR: A library for large linear classification. JMLR, 9:1871–1874, 2008.

[29] A.R. Gallant and H. White. There exists a neural network that does not make
avoidable mistakes. In ICNN, pages 657–664 vol.1, July 1988.

[30] Bernd Gärtner and Martin Jaggi. Coresets for polytope distance. In Proceedings of the
Twenty-fifth Annual Symposium on Computational Geometry, SCG ’09, pages 33–42, New
York, NY, USA, 2009. ACM.

76

[31] Elmer G. Gilbert. An iterative procedure for computing the minimum of a quadratic
form on a convex set. SIAM Journal on Control, 4(1):61–80, 1966.

[32] Amir Globerson and Roi Livni. Learning infinite-layer networks: Beyond the kernel
trick. arXiv:1606.05316 [cs], June 2016. URL http://arxiv.org/abs/1606.05316.
arXiv: 1606.05316.

[33] Mehmet Gönen and Ethem Alpaydin. Localized multiple kernel learning. In ICML,
pages 352–359, 2008.

[34] Mehmet Gönen and Ethem Alpaydin. Localized algorithms for multiple kernel
learning. Pattern Recognition, 46(3):795–807, 2013.

[35] Ian J. Goodfellow, David Warde-Farley, Pascal Lamblin, Vincent Dumoulin, Mehdi
Mirza, Razvan Pascanu, James Bergstra, Frédéric Bastien, and Yoshua Bengio.
Pylearn2: a machine learning research library. arXiv:1308.4214 [cs, stat], August 2013.
URL http://arxiv.org/abs/1308.4214. arXiv: 1308.4214.

[36] Arthur Gretton, Karsten M Borgwardt, Malte Rasch, Bernhard Schölkopf, and
Alexander J Smola. A kernel method for the two-sample problem. In NIPS, pages
513–. MIT, 2007.

[37] Yina Han and Guizhong Liu. Probability-confidence-kernel-based localized multiple
kernel learning with norm. IEEE Transactions on Systems, Man, and Cybernetics, Part B:
Cybernetics, 42(3):827–837, 2012.

[38] Sariel Har-Peled. Geometric Approximation Algorithms. American Mathematical Soci-
ety, Boston, MA, USA, 2011.

[39] Tamir Hazan and Tommi Jaakkola. Steps toward deep kernel methods from infinite
neural networks. arXiv:1508.05133 [cs], August 2015. URL http://arxiv.org/abs/

1508.05133. arXiv: 1508.05133.

[40] Ashesh Jain, S. V. N. Vishwanathan, and Manik Varma. SPG-GMKL: generalized
multiple kernel learning with a million kernels. In KDD, pages 750–758, 2012.

[41] M. Jiu and H. Sahbi. Deep kernel map networks for image annotation. In ICASSP,
pages 1571–1575, March 2016.

[42] M. Jiu and H. Sahbi. Laplacian deep kernel learning for image annotation. In ICASSP,
pages 1551–1555, March 2016.

[43] Satyen Kale. Efficient algorithms using the multiplicative weights update method. PhD
thesis, Princeton University, 2007.

[44] Raghvendra Kannao and Prithwijit Guha. TV Commercial Detection Using Success Based
Locally Weighted Kernel Combination, pages 793–805. Springer International Publishing,
Cham, 2016.

[45] Marius Kloft, Ulf Brefeld, Soeren Sonnenburg, Pavel Laskov, Klaus-Robert Müller,
and Alexander Zien. Efficient and accurate lp-norm multiple kernel learning. In
NIPS, Vancouver, Canada, 2009.

77

[46] Marius Kloft, Ulf Brefeld, Sören Sonnenburg, and Alexander Zien. lp-norm multiple
kernel learning. JMLR, 12:953–997, 2011.

[47] Alex Krizhevsky. Learning multiple layers of features from tiny images. Citeseer, 2009.

[48] Abhishek Kumar, Alexandru Niculescu-Mizil, Koray Kavukcuoglu, and Hal III
Daumé. A binary classification framework for two stage multiple kernel learning.
In ICML, pages 1295–1302, 2012.

[49] Gert R. G. Lanckriet, Nello Cristianini, Peter Bartlett, Laurent El Ghaoui, and
Michael I. Jordan. Learning the kernel matrix with semidefinite programming. JMLR,
5:27–72, December 2004.

[50] Quoc Le, Tamas Sarlos, and Alexander Smola. Fastfood - computing hilbert space
expansions in loglinear time. In ICML, pages 244–252, 2013.

[51] Y. LeCun. Generalization and network design strategies. In R. Pfeifer, Z. Schreter,
F. Fogelman, and L. Steels, editors, Connectionism in Perspective, Zurich, Switzerland,
1989. Elsevier. an extended version was published as a technical report of the Univer-
sity of Toronto.

[52] Yunwen Lei, Alexander Binder, Ürün Dogan, and Marius Kloft. Localized multiple
kernel learning - a convex approach. CoRR, abs/1506.04364, 2015. URL http://

arxiv.org/abs/1506.04364.

[53] Xinwang Liu, Lei Wang, Jian Zhang, and Jianping Yin. Sample-adaptive multiple
kernel learning. In AAAI, 2014.

[54] Zhiyun Lu, Avner May, Kuan Liu, Alireza Bagheri Garakani, Dong Guo, Aurélien
Bellet, Linxi Fan, Michael Collins, Brian Kingsbury, Michael Picheny, and Fei Sha.
How to scale up kernel methods to be as good as deep neural nets. arXiv:1411.4000
[cs, stat], November 2014. arXiv: 1411.4000.

[55] Julien Mairal, Piotr Koniusz, Zaid Harchaoui, and Cordelia Schmid. Convolutional
Kernel Networks. In NIPS, pages 2627–2635, 2014.

[56] Charles A. Micchelli and Massimiliano Pontil. Learning the kernel function via
regularization. JMLR, 6:1099–1125, December 2005.

[57] John Moeller, Parasaran Raman, Suresh Venkatasubramanian, and Avishek Saha. A
geometric algorithm for scalable multiple kernel learning. In AIStats, pages 633–642,
2014.

[58] Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms:. Cambridge
University Press, Cambridge, 008 1995. doi: 10.1017/CBO9780511814075.

[59] Radford M. Neal. Priors for infinite networks. In Bayesian Learning for Neural Networks,
number 118 in Lecture Notes in Statistics, pages 29–53. Springer New York, 1996.

[60] Junier Oliva, Avinava Dubey, Barnabas Poczos, Jeff Schneider, and Eric P. Xing.
Bayesian nonparametric kernel-learning. arXiv:1506.08776 [stat], June 2015. URL
http://arxiv.org/abs/1506.08776. arXiv: 1506.08776.

78

[61] Cheng Soon Ong, Alexander J. Smola, and Robert C. Williamson. Learning the kernel
with hyperkernels. JMLR, 6:1043–1071, 2005.

[62] Francesco Orabona and Jie Luo. Ultra-fast optimization algorithm for sparse multi
kernel learning. In ICML, Bellevue, USA, 2011.

[63] Paul Pavlidis, Jason Weston, Jinsong Cai, and William Noble Grundy. Gene functional
classification from heterogeneous data. In Proc. Intl. Conf. on Computational Biology,
RECOMB ’01, pages 249–255, New York, NY, USA, 2001. ACM.

[64] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
JMLR, 12:2825–2830, 2011.

[65] Jeff M. Phillips and Suresh Venkatasubramanian. A gentle introduction to the kernel
distance. CoRR, abs/1103.1625, 2011.

[66] Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. In
NIPS, pages 1177–1184, 2007.

[67] Alain Rakotomamonjy, Francis Bach, Stéphane Canu, and Yves Grandvalet. More
efficiency in multiple kernel learning. In ICML, Corvalis, USA, 2007.

[68] Bernhard Schölkopf, Ralf Herbrich, and Alex J. Smola. A Generalized Representer
Theorem, pages 416–426. Springer Berlin Heidelberg, Berlin, Heidelberg, 2001.

[69] Sören Sonnenburg, Gunnar Rätsch, Christin Schäfer, and Bernhard Schölkopf. Large
scale multiple kernel learning. JMLR, 7:1531–1565, December 2006.

[70] J. F. Sturm. Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric
cones. Optimization Methods and Software, 11–12:625–653, 1999.

[71] Dougal J Sutherland and Jeff Schneider. On the error of random Fourier features. UAI,
pages 862–871, July 2015.

[72] Leslie G. Valiant. A bridging model for parallel computation. Commun. ACM, 33(8):
103–111, August 1990.

[73] Vladimir Vapnik and Alexey Chervonenkis. A note on one class of perceptrons.
Automation and remote control, 25(1), 1964.

[74] Manik Varma and Bodla Rakesh Babu. More generality in efficient multiple kernel
learning. In ICML, Montreal, Canada, 2009.

[75] S. V. N. Vishwanathan, Zhaonan Sun, Nawanol Ampornpunt, and Manik Varma.
Multiple kernel learning and the SMO algorithm. In NIPS, Vancouver, Canada, 2010.

[76] Christopher Williams and Matthias Seeger. Using the Nyström method to speed up
kernel machines. In NIPS, pages 682–688, 2001.

[77] Andrew Wilson and Ryan Adams. Gaussian process kernels for pattern discovery
and extrapolation. In ICML, pages 1067–1075, 2013.

79

[78] Andrew Gordon Wilson, Zhiting Hu, Ruslan Salakhutdinov, and Eric P. Xing. Deep
kernel learning. arXiv:1511.02222 [cs, stat], November 2015. URL http://arxiv.org/

abs/1511.02222. arXiv: 1511.02222.

[79] Zenglin Xu, Rong Jin, Irwin King, and Michael R. Lyu. An extended level method for
efficient multiple kernel learning. In NIPS, Vancouver, Canada, 2008.

[80] Zenglin Xu, Rong Jin, Haiqin Yang, Irwin King, and Michael R. Lyu. Simple and
efficient multiple kernel learning by group lasso. In ICML, Haifa, Israel, 2010.

[81] Jingjing Yang, Yuanning Li, Yonghong Tian, Lingyu Duan, and Wen Gao. Group-
sensitive multiple kernel learning for object categorization. In ICCV, pages 436–443.
IEEE, 2009.

[82] Tianbao Yang, Yu-Feng Li, Mehrdad Mahdavi, Rong Jin, and Zhi-Hua Zhou. Nyström
method vs random Fourier features: A theoretical and empirical comparison. In NIPS,
pages 485–493, 2012.

[83] Zichao Yang, Marcin Moczulski, Misha Denil, Nando de Freitas, Alex Smola, Le Song,
and Ziyu Wang. Deep fried convnets. arXiv:1412.7149 [cs, stat], December 2014. URL
http://arxiv.org/abs/1412.7149. arXiv: 1412.7149.

[84] Zichao Yang, Andrew Wilson, Alex Smola, and Le Song. À la carte – learning fast
kernels. In AIStats, pages 1098–1106, 2015.

[85] Jieping Ye, Jianhui Chen, and Shuiwang Ji. Discriminant kernel and regularization
parameter learning via semidefinite programming. In ICML, pages 1095–1102, New
York, NY, USA, 2007. ACM.

[86] Felix X. Yu, Sanjiv Kumar, Henry Rowley, and Shih-Fu Chang. Compact nonlinear
maps and circulant extensions. arXiv:1503.03893 [cs, stat], March 2015. URL http:

//arxiv.org/abs/1503.03893. arXiv: 1503.03893.

[87] Jinfeng Zhuang, Ivor W. Tsang, and Steven Hoi. Two-layer multiple kernel learning.
In AIStats, pages 909–917, 2011.

[88] Alexander Zien and Cheng Soon Ong. Multiclass multiple kernel learning. In ICML,
pages 1191–1198, New York, NY, USA, 2007. ACM.

