2,448 research outputs found

    PAMOGK: A pathway graph kernel based multi-omics clustering approach for discovering cancer patient subgroups

    Get PDF
    Accurate classification of patients into homogeneous molecular subgroups is critical for the developmentof effective therapeutics and for deciphering what drives these different subtypes to cancer. However, the extensivemolecular heterogeneity observed among cancer patients presents a challenge. The availability of multi-omic datacatalogs for large cohorts of cancer patients provides multiple views into the molecular biology of the tumorswith unprecedented resolution. In this work, we develop PAMOGK, which integrates multi-omics patient data andincorporates the existing knowledge on biological pathways. PAMOGK is well suited to deal with the sparsity ofalterations in assessing patient similarities. We develop a novel graph kernel which we denote as smoothed shortestpath graph kernel, which evaluates patient similarities based on a single molecular alteration type in the contextof pathway. To corroborate multiple views of patients evaluated by hundreds of pathways and molecular alterationcombinations, PAMOGK uses multi-view kernel clustering. We apply PAMOGK to find subgroups of kidney renalclear cell carcinoma (KIRC) patients, which results in four clusters with significantly different survival times (p-value =7.4e-10). The patient subgroups also differ with respect to other clinical parameters such as tumor stage andgrade, and primary tumor and metastasis tumor spreads. When we compare PAMOGK to 8 other state-of-the-artexisting multi-omics clustering methods, PAMOGK consistently outperforms these in terms of its ability to partitionpatients into groups with different survival distributions. PAMOGK enables extracting the relative importance ofpathways and molecular data types. PAMOGK is available at github.com/tastanlab/pamog

    Data Representation for Learning and Information Fusion in Bioinformatics

    Get PDF
    This thesis deals with the rigorous application of nonlinear dimension reduction and data organization techniques to biomedical data analysis. The Laplacian Eigenmaps algorithm is representative of these methods and has been widely applied in manifold learning and related areas. While their asymptotic manifold recovery behavior has been well-characterized, the clustering properties of Laplacian embeddings with finite data are largely motivated by heuristic arguments. We develop a precise bound, characterizing cluster structure preservation under Laplacian embeddings. From this foundation, we introduce flexible and mathematically well-founded approaches for information fusion and feature representation. These methods are applied to three substantial case studies in bioinformatics, illustrating their capacity to extract scientifically valuable information from complex data

    Multiple kernel learning for integrative consensus clustering of omic datasets.

    Get PDF
    MOTIVATION: Diverse applications-particularly in tumour subtyping-have demonstrated the importance of integrative clustering techniques for combining information from multiple data sources. Cluster Of Clusters Analysis (COCA) is one such approach that has been widely applied in the context of tumour subtyping. However, the properties of COCA have never been systematically explored, and its robustness to the inclusion of noisy datasets is unclear. RESULTS: We rigorously benchmark COCA, and present Kernel Learning Integrative Clustering (KLIC) as an alternative strategy. KLIC frames the challenge of combining clustering structures as a multiple kernel learning problem, in which different datasets each provide a weighted contribution to the final clustering. This allows the contribution of noisy datasets to be down-weighted relative to more informative datasets. We compare the performances of KLIC and COCA in a variety of situations through simulation studies. We also present the output of KLIC and COCA in real data applications to cancer subtyping and transcriptional module discovery. AVAILABILITY AND IMPLEMENTATION: R packages klic and coca are available on the Comprehensive R Archive Network. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online

    Unsupervised multiple kernel learning approaches for integrating molecular cancer patient data

    Get PDF
    Cancer is the second leading cause of death worldwide. A characteristic of this disease is its complexity leading to a wide variety of genetic and molecular aberrations in the tumors. This heterogeneity necessitates personalized therapies for the patients. However, currently defined cancer subtypes used in clinical practice for treatment decision-making are based on relatively few selected markers and thus provide only a coarse classifcation of tumors. The increased availability in multi-omics data measured for cancer patients now offers the possibility of defining more informed cancer subtypes. Such a more fine-grained characterization of cancer subtypes harbors the potential of substantially expanding treatment options in personalized cancer therapy. In this thesis, we identify comprehensive cancer subtypes using multidimensional data. For this purpose, we apply and extend unsupervised multiple kernel learning methods. Three challenges of unsupervised multiple kernel learning are addressed: robustness, applicability, and interpretability. First, we show that regularization of the multiple kernel graph embedding framework, which enables the implementation of dimensionality reduction techniques, can increase the stability of the resulting patient subgroups. This improvement is especially beneficial for data sets with a small number of samples. Second, we adapt the objective function of kernel principal component analysis to enable the application of multiple kernel learning in combination with this widely used dimensionality reduction technique. Third, we improve the interpretability of kernel learning procedures by performing feature clustering prior to integrating the data via multiple kernel learning. On the basis of these clusters, we derive a score indicating the impact of a feature cluster on a patient cluster, thereby facilitating further analysis of the cluster-specific biological properties. All three procedures are successfully tested on real-world cancer data. Comparing our newly derived methodologies to established methods provides evidence that our work offers novel and beneficial ways of identifying patient subgroups and gaining insights into medically relevant characteristics of cancer subtypes.Krebs ist eine der häufigsten Todesursachen weltweit. Krebs ist gekennzeichnet durch seine Komplexität, die zu vielen verschiedenen genetischen und molekularen Aberrationen im Tumor führt. Die Unterschiede zwischen Tumoren erfordern personalisierte Therapien für die einzelnen Patienten. Die Krebssubtypen, die derzeit zur Behandlungsplanung in der klinischen Praxis verwendet werden, basieren auf relativ wenigen, genetischen oder molekularen Markern und können daher nur eine grobe Unterteilung der Tumoren liefern. Die zunehmende Verfügbarkeit von Multi-Omics-Daten für Krebspatienten ermöglicht die Neudefinition von fundierteren Krebssubtypen, die wiederum zu spezifischeren Behandlungen für Krebspatienten führen könnten. In dieser Dissertation identifizieren wir neue, potentielle Krebssubtypen basierend auf Multi-Omics-Daten. Hierfür verwenden wir unüberwachtes Multiple Kernel Learning, welches in der Lage ist mehrere Datentypen miteinander zu kombinieren. Drei Herausforderungen des unüberwachten Multiple Kernel Learnings werden adressiert: Robustheit, Anwendbarkeit und Interpretierbarkeit. Zunächst zeigen wir, dass die zusätzliche Regularisierung des Multiple Kernel Learning Frameworks zur Implementierung verschiedener Dimensionsreduktionstechniken die Stabilität der identifizierten Patientengruppen erhöht. Diese Robustheit ist besonders vorteilhaft für Datensätze mit einer geringen Anzahl von Proben. Zweitens passen wir die Zielfunktion der kernbasierten Hauptkomponentenanalyse an, um eine integrative Version dieser weit verbreiteten Dimensionsreduktionstechnik zu ermöglichen. Drittens verbessern wir die Interpretierbarkeit von kernbasierten Lernprozeduren, indem wir verwendete Merkmale in homogene Gruppen unterteilen bevor wir die Daten integrieren. Mit Hilfe dieser Gruppen definieren wir eine Bewertungsfunktion, die die weitere Auswertung der biologischen Eigenschaften von Patientengruppen erleichtert. Alle drei Verfahren werden an realen Krebsdaten getestet. Den Vergleich unserer Methodik mit etablierten Methoden weist nach, dass unsere Arbeit neue und nützliche Möglichkeiten bietet, um integrative Patientengruppen zu identifizieren und Einblicke in medizinisch relevante Eigenschaften von Krebssubtypen zu erhalten

    Contrastive Continual Multi-view Clustering with Filtered Structural Fusion

    Full text link
    Multi-view clustering thrives in applications where views are collected in advance by extracting consistent and complementary information among views. However, it overlooks scenarios where data views are collected sequentially, i.e., real-time data. Due to privacy issues or memory burden, previous views are not available with time in these situations. Some methods are proposed to handle it but are trapped in a stability-plasticity dilemma. In specific, these methods undergo a catastrophic forgetting of prior knowledge when a new view is attained. Such a catastrophic forgetting problem (CFP) would cause the consistent and complementary information hard to get and affect the clustering performance. To tackle this, we propose a novel method termed Contrastive Continual Multi-view Clustering with Filtered Structural Fusion (CCMVC-FSF). Precisely, considering that data correlations play a vital role in clustering and prior knowledge ought to guide the clustering process of a new view, we develop a data buffer with fixed size to store filtered structural information and utilize it to guide the generation of a robust partition matrix via contrastive learning. Furthermore, we theoretically connect CCMVC-FSF with semi-supervised learning and knowledge distillation. Extensive experiments exhibit the excellence of the proposed method
    corecore