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Chapter 1

Introduction

Fundamental advances in molecular biology have driven the development of in-

creasingly sophisticated molecular profiling technologies, which have in turn opened

new scientific horizons. A notable product of this virtuous cycle has been the ex-

plosive growth of biological data. Gene expression microarrays and next-generation

sequencing technologies allow the measurement of thousands of genes in collections

of biological samples. The complex data sets that result can be regarded as coarse

snapshots of biomolecular network states and their aggregate output. These under-

lying networks are complex and dynamic, but at the same time, they clearly possess

considerable structure. A basic challenge is to recover elements of this structure in

ways that can yield new scientific insights for experimental development.

The starting point in this effort is naturally the data generated by profiling

technologies, which are typically complex, noisy, and high-dimensional. The ap-

proach developed in this thesis is to consider data representations that can organize

this sort of complex, high-dimensional data in a manner that reveals fundamental

structure. A widely-known example of a data representation approach is Princi-

pal Component Analysis (PCA) [61], which can reorganize and simplify data that

are concentrated on a linear subspace. In this work, we examine, theoretically and

empirically, the properties of the Laplacian Eigenmaps algorithm, [4] which can be
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viewed as a nonlinear analogue of PCA.

Laplacian Eigenmaps (LE) is often described as a nonlinear dimension reduc-

tion technique, and theoretical results have indeed established its capacity to recover

essential features of manifold-structured data [5]. In view of the highly nonlinear

structure and dynamics of biological networks, this flexibility is notably appealing.

But, with biological data, broader structural attributes are often of immediate inter-

est. Among these, cluster structure is perhaps the most widely considered. Across

diverse data types, clustering allows information to be propagated from limited

numbers of known entities that are co-organized amidst poorly understood ones.

Attributes of Laplacian Eigenmaps, and closely related methods such as Diffu-

sion Maps [18], suggest an appealing capacity to resolve a very broad range of cluster

structure. This notably includes clusters with complex geometries, which can arise

in high-dimensional data derived from complex systems. These clustering proper-

ties have largely been suggested by informal arguments. In this thesis, we develop a

precise characterization of cluster structure preservation under Laplacian-based em-

beddings. From this foundation, we show how Laplacian-based data representation

methods can be applied to flexibly combine information from different data sources.

We start in Chapter 2 with an overview of dimension reduction and data rep-

resentation techniques, focusing on Laplacian Eigenmaps and the related Diffusion

Maps method. In Chapter 3, we examine the clustering properties of Laplacian-

based data embeddings. Building on the work of Hunter and Strohmer [43], we

develop a result characterizing the effect of a Laplacian matrix perturbation on the

Laplacian-based data embedding. We show that for n well-separated clusters of
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arbitrary geometry, Laplacian-based representations map all points to orthogonally

separated, cluster-specific points that are further organized according to the intra-

cluster connectivity. Applying the developed perturbation result, we show that less

separated clusters are organized around the separated-case, cluster-specific points

with a bound governed by fundamental cluster structure attributes, such as the

internal coherence of the clusters, as well as their inter-cluster connectivity.

In Chapter 4, we introduce methods for two types of information fusion. In the

first ‘multiview fusion’ case, we have multiple data sets presenting different kinds

of measurements for a fixed collection of elements. We show that multiple kernels

describing data set-specific relationships can be flexibly combined within a direct

extension of the Laplacian-based data representation framework. A more general

sort of data fusion entails combining data sets recording observations of distinct and

non-overlapping sets of elements. Certain relationships are known or inferred to exist

between subsets of elements in the different data sets. The aim is to construct a

joint, heterogeneous data embedding that ‘aligns’ the data sets with respect to these

related elements, while preserving their respective structures. Building on a recently

developed generalization of the Diffusion Maps framework by Coifman and Hirn [17],

we introduce a novel, frame-based algorithm for constructing a joint embedding of

two distinct but related data sets.

With the mathematical foundation developed in Chapters 2 - 4, we present in

Chapter 5 three substantial case studies in biological data analysis. In the first, we

apply Laplacian and Schrödinger Eigenmaps to analyze a microarray gene expression

data set from a study of vertebrate eye development. We compare clusters developed
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using the Laplacian-based methods with ones derived from the original data and

PCA-processed data, and show greater biological specificity in the LE-based clusters.

This work was published in [25].

In the second case study, we apply the multi-kernel, Laplacian-based informa-

tion fusion methods introduced in Chapter 4 to organize genes with respect to a

combined measure of co-expression and proximity along a chromosome. The aim

is to predict features of chromosomal domain organization that may be related

to coordinated gene expression. A network of putative expression-related inter-

chromosomal interactions is constructed, and the results are assessed statistically,

and with respect to measured chromosomal interactions. This work was published

in [63].

In the third case study, we apply Laplacian Eigenmaps to organize a large

database of drug compound chemoactivity profiles and identify coherent clusters of

compounds sharing similar response profiles over the NCI-60 cancer cell lines. The

clusters are additionally organized in a network based on their relative similarity.

This drug cluster network is shown to be highly concordant with the existing un-

derstanding of compound class relationships, grouping known mechanism of action

drugs into coherent clusters, while revealing groups of novel compounds sharing

similar response profiles. The drug cluster network is integrated with a gene co-

expression network to identify sets of co-expression modules that are potentially

implicated in drug responses. We additionally present initial results from compu-

tational experiments with the joint embedding algorithm presented in Chapter 4,

applied to co-organize genes and drug compounds directly.
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Chapter 2

Background

2.1 Dimension Reduction and Data Organization

Large, high-dimensional data sets are increasingly encountered in many areas

of science, with the ability to collect data often outstripping the means to effec-

tively analyze it. An encouraging prospect is that complex data sets frequently

possess elements of organizing structure. For example, numerous sensors may re-

dundantly record attributes of a process that is fundamentally driven by a much

smaller number of parameters. Some common challenges include, among others,

nonlinear interaction of parameters or corruption by noise. These features are likely

to limit established analysis techniques, such as Principal Components Analysis

(PCA) [61], that presume a relatively simpler, linear data structure. To address

this situation, a number of nonlinear data organization approaches have been de-

veloped, such as Kernel PCA [70], ISOMAP [78], Locally Linear Embedding (LLE)

[69], Hessian LLE [23], Laplacian (Schrödinger) Eigenmaps [4, 5, 20], and Diffusion

Maps [18, 19]. These methods all aim to reduce the apparent complexity of data sets

by mapping their points to a space of lower dimension, while preserving important

elements of the original structure or geometry. By geometry, we mean the intrinsic

relationships between data points, e.g., which elements are ‘connected’. Connection

here is defined in some suitable, application-specific manner, as are the appropri-
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ately preserved structural features of the data. In this chapter, we will present

some background on Laplacian Eigenmaps and several closely related normalized

output algorithms. These methods share a common approach, presented in [29], for

recovering the low-dimensional structure of an input data set. They first identify

and represent the local neighborhood structure of the data. Then, an embedding is

constructed by solving a particular convex optimization problem subject to certain

normalization constraints. The latter constraints impose a degree of local structure

preservation which can, in particular, enable resolution of a broad range of cluster

structure. These flexible clustering properties support and enhance a range of learn-

ing techniques, motivating our focus on Laplacian-based embeddings. Relationships

between the presented approaches will be discussed, followed by some examples that

illustrate their properties.

2.2 Preliminaries and Notation

To unify the presentation through this chapter and the whole thesis, we review

some foundational items and establish the following notation.

• N is the number of points in the input data set.

• D is the dimension of the input data, and d is the dimension of the output

data.

• The high-dimensional input data points will be specified as x1, ..., xN ∈ RD,

and these are organized into the N × D matrix X, with the i-th row repre-

senting xi.
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• The data representation output by a particular algorithm will be specified as

y1, ..., yN ∈ Rd, with the output points organized as the rows of the N × d

matrix Y .

The normalized output algorithms model the data as a graph, with points

x1, ..., xN ∈ RD identified with vertices, and undirected edges representing rela-

tionships between points. We use the standard notation G = (V,E) to denote an

undirected graph with vertex set V and edge set E. Given a data set X, there are

several approaches for constructing a data graph based on pairwise similarities sij

or pairwise distances dij between points xi and xj [82].

• The ε-neighborhood graph places an edge between all points separated by a

distance less than ε. Since ε is chosen so that distances between connected

points are of the same scale, the edges are typically not weighted.

• The k-nearest neighbor graph places an edge between the vertices identified

with points xi and xj if xi is one of the k nearest neighbors of xj or vice versa.

An alternative approach for obtaining a symmetric neighborhood relationship

is to construct the mutual k-nearest neighbor graph. Here points xi and xj are

connected only if xi is among the k nearest neighbors of xj and xj is one of

the k nearest neighbors of xi. For both of these neighborhood graphs, edges

can be weighted or unweighted.

• The fully connected graph relates all points, with edge weights given by a sim-

ilarity function that effectively models local neighborhood relationships. A
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popular choice is the Gaussian kernel e
−‖xi−xj‖

2

σ , σ > 0. Here the kernel band-

width parameter σ controls the neighborhood extent in a manner comparable

to the parameter ε in the ε-neighborhood graph.

The normalized output algorithms derive data representations from the eigen-

vectors of matrices constructed from the data graph. These matrices are real-valued

and symmetric, so the eigendecomposition is guaranteed by the following result

[51, 75].

Theorem 1 (Spectral Theorem). Let A be any real, symmetric n×n matrix. Then:

1. A has n real eigenvalues λ1, ..., λn (not necessarily distinct).

2. A has a set of n eigenvectors u1, ...un that form an orthonormal basis for Rn,

that is uTi uj = δij, for all i, j.

We thus have the spectral decomposition

A =
n∑

i=1

λiuiu
T
i = UΛUT ,

where Λ = diag(λ1, ..., λn) and U = [u1, ...un] is an orthogonal matrix with the

eigenvectors of A along its columns.

We accordingly assume that the eigenvalue-eigenvector pairs (λi, vi) are ordered with

respect to the magnitude of the eigenvalues. If we have λ1 ≤ λ2, ..., λN , we refer to

v1, ..., vd as the bottom d eigenvectors, and vN−d+1, ..., vN as the top d eigenvectors.

We finally recall the important class of positive semidefinite matrices, together with

a useful way of characterizing them in terms of their eigenvalues.
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Definition 1 (Positive Semidefinite Matrices). A real, symmetric n × n matrix A

is positive semidefinite (denoted A � 0) if xTAx ≥ 0 for all x ∈ Rn. It is positive

definite (denoted A � 0) if xTAx > 0 for all nonzero x ∈ Rn.

Theorem 2. Let A be a real, symmetric n× n matrix. Then:

A is positive semidefinite (positive definite) if and only if λi ≥ 0 (λi > 0) for all

eigenvalues λi, i = 1, ..., n.

2.3 Principal Components Analysis

Principal Components Analysis (PCA) is one of the best-known algorithms for

dimension reduction and data representation. It was first described by Pearson in

1901 as method for computing “lines and planes of closest fit to systems of points in

space” [61], and was further extended by Hotelling, who applied it to psychometry

[42]. In the context of stochastic processes, PCA was independently developed by

Karhunen and Loeve [45, 58], and is sometimes described as the Karhunen-Loeve

Transform. For a given data set X, PCA identifies the directions which capture the

largest amount of variation in the data. If we assume, without loss of generality,

that the data is mean-centered, i.e., the mean of the data points is subtracted from
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each point, the single direction of maximum variation can be computed as

arg max
‖v‖=1

Var(Xv) = arg max
‖v‖=1

E(Xv)2

= arg max
‖v‖=1

N∑

i=1

(xTi v)2

= arg max
‖v‖=1

N∑

i=1

(vTxi)(x
T
i v)

= arg max
‖v‖=1

vT

(
N∑

i=1

(xix
T
i )

)
v

= arg max
‖v‖=1

vTXTXv.

The last line above is maximized by setting v to be the top eigenvector of the

data covariance matrix XTX. More generally, the projection of the data onto

the d orthogonal vectors associated with the greatest variation is given by XV ,

where V is the D × d matrix constructed from the top eigenvectors of XTX. The

particular eigenvalues specify the variance of the data projected along the respective

eigenvectors. If there are directions along which the data varies only minimally,

dimension reduction can be achieved by setting d < D, effectively dropping the

latter directions, which may reflect noise, etc. in the data. PCA is optimal for data

that lies on or very near a linear subspace. For data derived from even a simple

non-linear manifold, however, it can yield poor data representations, as illustrated

by the example in Section 2.8.1 of this chapter. The non-linear techniques that

follow in Sections 2.4, 2.5, and 2.7 can be seen as analogues of PCA that seek to

faithfully represent more complex, non-linear data.
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2.4 Laplacian Eigenmaps

Laplacian Eigenmaps (LE) was described by Belkin and Niyogi in [4], and

further developed by the same authors in [5]. With LE, we assume that our data

set consists of points x1, ..., xN , drawn from a d-dimensional manifold in RD, and we

assume that d << D. More generally, we may assume that the data is sampled from

a distribution with support concentrated on a d-dimensional manifold. We obtain

a manifold structure preserving low dimensional representation y1, ..., yN ⊂ Rd in

three steps:

1. Construct Data Adjacency Matrix W : For k ∈ N, put an edge between ele-

ments i and j if xi is among the k nearest neighbors of xj or vice versa. Weight

connected edges using Wij = e
−‖xi−xj‖

2

σ , σ > 0.

2. Construct Laplacian Matrix L: Set Dii =
∑N

j=1 Wij, and let L = D −W .

3. Compute Eigenmaps: Solve Lx = λDx. Let f0, f1, ..., fd be the eigenvec-

tors corresponding to the first d + 1 eigenvalues 0 = λ0 ≤ λ1 ≤ ... ≤ λd.

Discard f0 and embed in d-dimensional space using the map xi → yi =

(f1(i), f2(i), ..., fd(i)). For a connected data graph, one can verify that f0

is the constant one vector 1l . See [15, 82] for further details.

The overall approach is motivated by the fact that the graph-based Laplacian ma-

trix L can be seen as a discrete analogue of the Laplace-Beltrami operator L on

the underlying manifold. In particular, Belkin and Niyogi show that the Laplacian

constructed from the adjacency graph of data uniformly sampled from a compact
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submanifold M of RD converges to the appropriately normalized Laplace-Beltrami

operator on M, see [5]. The eigenmaps of the latter operator provide an optimal

embedding of the manifold into a space of reduced dimension. To recognize this,

suppose thatM is a smooth, compact, d-dimensional Riemannian manifold isomet-

rically embedded in RD. We would like to find a map from the manifold M to

the real line R that preserves local neighborhood structure, mapping nearby points

on the manifold to nearby points on the line. Let f : M → R denote the desired

map. If we suppose that f is twice differentiable, it is not hard to show that for

neighboring points x, z ∈M,

|f(z)− f(x)| ≤ ‖∇f(x)‖‖z − x‖+ o(‖z − x‖).

With ‖∇f(x)‖ providing an estimate of how far apart f maps nearby points, we see

that the optimal locality preserving map is given by

arg min
‖f‖L2(M)=1

∫

M
‖∇f(x)‖2 = arg min

‖f‖L2(M)=1

∫

M
L(f)f.

In the above, the equality of the minimized integrals follows from the fact that

L ≡ − div ∇(f) and from the Stokes’ Theorem. Consequently, we have that the

desired map f must be an eigenfunction of L, which is positive semidefinite and has

a discrete spectrum (sinceM is assumed to be compact [67]). If the eigenfunctions

of L are ordered with respect to the eigenvalues 0 = λ0 ≤ λ1 ≤ λ2 ≤ ..., we note

that f0 can be excluded as it is the constant function mapping the entire manifold

to a single point [4, 5]. The desired locality preserving map is thus f1, and more

generally, for an optimal d-dimensional embedding, we have x→ (f1(x), ..., fd(x)).
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Since the graph-based Laplacian converges to the manifold-based Laplace-

Beltrami operator, its associated data mappings progressively inherit the corre-

sponding manifold recovery guarantees [4, 5]. These ideas motivate a more con-

crete understanding of LE in the finite data settting. Let the N × d matrix Y =

(y1, ..., yN)T denote the low-dimensional representation of our data set X. The

eigenvalue problem Lx = λDx can be shown to solve the following minimization:

arg min
Y TDY=I

trace(Y TLY ) = arg min
Y TDY=I

1

2

N∑

i,j=1

‖yi − yj‖2Wi,j. (2.1)

Note that the first term on the right forces neighboring points in the original data

space, i.e., with large Wij, to be mapped close to one another. As such, LE acts to

organize data with respect to local features, which allows natural cluster structure to

be better revealed. These cluster preservation properties will be further motivated

and developed in Chapter 3. For review and development of Laplacian Eigenmaps,

together with presentation of numerical experiments with hyperspectral imaging

data, see also [27, 32, 38, 84].

2.5 Schrödinger Eigenmaps

The Schrödinger Eigenmaps procedure, introduced by Czaja and Ehler in [20],

builds on the strengths of Laplacian Eigenmaps. The Laplace Equation ∆ϕ = 0 can

be extended to the time-independent Schrödinger Equation by adding a potential

term v(x) to the Laplace operator:

EΨ(x) = ∆Ψ(x) + v(x)Ψ(x). (2.2)
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The discrete analogue of the resulting Schrödinger operator E = ∆ +v is the matrix

E = L + V , where V is a nonnegative diagonal matrix. It can be shown that the

matrix L+ αV can be applied in place of the matrix L in the framework presented

above, with the parameter α > 0 determining the strength of the potential [20,

32]. Let the N × d matrix Y = (y1, ..., yN)T denote the resulting low-dimensional

representation of our data set. The modified eigenvalue problem (L+αV )x = λDx

can be shown to solve the following minimization [20, 32]:

arg min
Y TDY=I

trace(Y T (L+αV )Y ) = arg min
Y TDY=I

1

2

N∑

i,j=1

‖yi−yj‖2Wi,j+α
N∑

i=1

V (i)‖yi‖2. (2.3)

Note that the first term on the right forces neighboring points in the original data

space, i.e., with large Wij, to be mapped close to one another. The second term,

however, penalizes points with large values of V (i). In the case of a binary-valued

potential, the minimization would tend to push points with corresponding poten-

tial values of 1 together and toward zero. More general potentials (including non-

diagonal ones) can be constructed and effectively used for introducing prior knowl-

edge, labeling sets of points that ought to cluster together (or be separated) based

on external evidence [25]. The behavior is nuanced because the minimization must

balance information expressed through the potential with the data-dependent con-

nectivity structure captured by the weights Wij.

2.6 Basic Properties of Graph Laplacians

In this Section, we summarize for future reference some basic properties of

graph Laplacians, following elements of the notation and presentation in [82]. Sev-
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eral related graph Laplacians appear in the literature [15, 82]. The one presented

in association with Laplacian Eigenmaps, L = D − W , is often described as the

unnormalized graph Laplacian [82]. A straightforward computation shows that for

every vector f ∈ RN , we have:

fTLf =
1

2

N∑

i,j=1

Wij(fi − fj)2,

where Wij is an element of the nonnegative-valued, symmetric weight matrix W .

Thus L is symmetric and positive semi-definite, with a minimal eigenvalue of 0,

associated with the constant one vector 1l .

Two normalized graph Laplacians are defined in [82]:

Lrw = D−1L and Lsym = D−1/2LD−1/2.

Lrw is closely related to a random walk on the nodes of the graph, and from

Lsym = D1/2LrwD
−1/2, we see that Lsym is a symmetric matrix similar to Lrw.

We accordingly have:

Lx = λDx ⇔ Lrwx = λx ⇔ Lsym(D1/2x) = λ(D1/2x).

The Laplacian spectrum can be associated with several graph invariants [15].

We note in particular the following result relating the number of connected com-

ponents of an undirected graph G to the spectral properties of its associated graph

Laplacian matrices L, Lrw, and Lsym [82].

Proposition 1. Let G be an undirected graph with nonnegative weights. The multi-

plicity k of the eigenvalue 0 of L, Lrw, and Lsym is equal to the number of connected
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components C1, ..., Ck in the graph. For L and Lrw, the eigenspace of eigenvalue 0 is

spanned by the indicator vectors 1lCi of these components. For Lsym, the eigenspace

of eigenvalue 0 is spanned by the vectors D1/21lCi.

2.7 Connections with Related Techniques

With the above background, we now review Diffusion Maps and Locally Linear

Embedding (LLE), two normalized output algorithms that can produce embeddings

closely related to those of Laplacian Eigenmaps [4, 29].

2.7.1 Diffusion Maps

The diffusion maps algorithm provides a set of embeddings which aim to in-

tegrate and represent relationships between data points at different scales. Suppose

we are given a data set Ω = {x1, ..., xN}, and a kernel or weight matrix W ∈ RN×N

that is symmetric (W (xi, xj) = W (xj, xi)) and positivity-preserving (W (xi, xj) ≥ 0).

The data elements could be points in a Euclidean space, representing, for example, a

vector of measurements. Alternatively, they may be nodes of an explicitly specified

graph, as in a constructed social or biological network. In all instances, the kernel

can be specified to indicate any application-relevant similarity relationships, subject

only to the above constraints. With the geometric information captured in the ker-

nel, we can now define a Markov random walk on the data set viewed as a graph

with data element nodes and kernel-weighted edges. In particular, the transition

probability of going from node xi to node xj in a single step is
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p1(xi, xj) =
W (xi, xj)∑
z∈ΩW (xi, z)

=
W (xi, xj)

D(xi, xi)
, (2.4)

where D(xi, xi) represents the degree or connectivity strength of the node xi, as

specified in the appropriate entry of a diagonal matrix D ∈ RN×N .

Let P = D−1W denote the N × N matrix whose (i, j) entry is the above-

specified probability of transition from node xi to node xj. If we consider P t, the

matrix P raised to the power t, we record the corresponding probabilities, pt(xi, xj),

of transition over t time steps. The Markov matrix P thus captures the first-order

neighborhood structure of the data graph, while its iterates integrate higher order

connectivity relationships by effectively running the random walk forward in time.

The diffusion time t now becomes a convenient scale parameter in the analysis of

the data structure. If we additionally assume that our data graph is connected, it

can be shown that [18]

lim
t→+∞

pt(xi, xj) =
D(xj, xj)∑
z∈Ω D(z, z)

= φ0(xj), (2.5)

where φ0 is the unique stationary distribution. Furthermore, the Markov chain is re-

versible, satisfying the detailed balance condition φ0(xi)p1(xi, xj) = φ0(xj)p1(xj, xi).

In this setting, it is natural to define the diffusion distance Dt between xi and xj as

D2
t (xi, xj) = ‖pt(xi, ·)− pt(xj, ·)‖2

1/φ0
=
∑

z∈Ω

(pt(xi, z)− pt(xj, z))2

φ0(z)
. (2.6)

Following the discussion in [18], we note some important attributes of the diffusion

distance:
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• The weighted L2 distance specified above compares the transition probabil-

ity distributions of nodes xi and xj, but with the weights 1/φ0(z) acting to

specifically penalize deviations over regions of relatively low data density.

• The diffusion distance between two points will be small whenever they are

highly connected over many paths in the graph. This will clearly be the case

within densely connected regions, and the emphasis on aggregate connectivity

tends to emphasize cluster structure in the data. In particular, at any given

scale of analysis, clusters emerge as regions where the probability of ‘escape’

to less connected regions is low.

• The diffusion distance Dt(xi, xj) effectively integrates information on all paths

of length t connecting xi and xj. As such, it tends to be more robust with re-

spect to noise perturbations, unlike the geodesic or shortest path distance. The

latter distance can, for example, be spuriously compressed if noise-impacted

data induces a non-intrinsic, ‘short-circuit’ connectivity between two points

under consideration.

The Markov transition matrix described above has some specific spectral prop-

erties. In particular, the eigenvalues of Pt satisfy 1 = λ0 ≥ |λ1| ≥ ... ≥ |λN−1|. In

addition, it can be shown that the diffusion distance can be expressed in terms of

its eigenvalues and eigenvectors [18]:

Dt(xi, xj) =

(∑

l≥1

λ2t
l (ψl(xi)− ψl(xj))2

) 1
2

. (2.7)
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In the above, ψl(xi) and ψl(xj) denote eigenvector components corresponding to

xi and xj, and we begin the summation from l = 1 since ψ0 is constant (with all

entries equal to one). Since the eigenvalues decay in magnitude, we can potentially

approximate the diffusion distance Dt with a reduced number of summation terms.

Specifically, given an accuracy δ > 0, let d(t) indicate the largest index l such that

|λl|t > δ|λ1|t. The above summation over the first d(t) nontrivial eigenvalues and

eigenvectors will approximate the diffusion distance Dt up to a relative precision δ.

In addition, if we define the following diffusion map

Ψt : xi 7→
(
λt1ψ1(xi), λ

t
2ψ2(xi), . . . , λ

t
d(t)ψd(t)(xi)

)T
, (2.8)

then we have the following result.

Proposition 2. The diffusion map Ψt embeds the data into the Euclidean space

Rd(t) so that in this space, the Euclidean distance is equal to the diffusion distance,

up to relative accuracy δ, or equivalently,

D2
t (xi, xj) '

d(t)∑

l=1

λ2t
l (ψl(xi)− ψl(xj))2 = ‖Ψt(xi)−Ψt(xj)‖2.

The extent of dimension reduction ultimately depends on both the scale parameter

t and the decay of the eigenvalues, with the latter decay shaped by the connectivity

structure of the kernel-prescribed data graph. Note that P = D−1W = I − Lrw,

so that the top eigenvectors of P used for the diffusion maps embedding correspond

to the bottom eigenvectors of Lrw. As indicated in Section 2.6, the latter are also

the bottom eigenvectors in the generalized eigenvalue problem Lx = λDx. The

diffusion maps embedding is thus constructed from the same set of eigenvectors
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used in Laplacian Eigenmaps, though with diffusion maps, these are now weighted

with respect to the eigenvalues of the matrix P . If, for example, the data graph is

connected and there are d clusters in the data, the d largest eigenvalues of P will be

very close to 1, and the (d− 1)-dimensional diffusion maps embedding will be quite

similar to the (d− 1)-dimensional Laplacian Eigenmaps embedding.

2.7.2 Locally Linear Embedding

The LLE algorithm begins with the intuition that, for a sufficiently smooth

manifold, the local geometry is approximately linear within small neighborhoods.

As a consequence, the mapping from the manifold to Rd is expected to be nearly

linear within each such region. The algorithm proceeds in three steps to discover

locally linear structure and represent the data so that this structure is approximately

preserved in a low-dimensional embedding.

1. Identify Local Neighborhoods: for each xi, find the k nearest neighbor set

N(i) = {xi1 , ..., xik}.

2. Construct the Approximation Matrix W : Choose Wij to minimize

∑N
i=1 ‖xi −

∑k
j=1 Wijxij‖2, subject to the constraint

∑k
j=1Wij = 1.

This is equivalent to orthogonally projecting each xi onto the affine linear span

of its neighborhood set xij ’s.

3. Compute the Embedding: Let f1, ..., fd be the bottom d non-constant eigen-

vectors of the symmetric, positive semi-definite matrix M = (I−W )T (I−W ).

Embed in d-dimensional space using the map xi → yi = (f1(i), f2(i), ..., fd(i)).
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Figure 2.1: Nonlinear (Diffusion Maps) vs. linear (PCA) dimension reduction with

the Swiss Roll data set.

The above embedding specifically minimizes the quantity

N∑

i=1

‖yi −
k∑

j=1

Wijyij‖2,

to provide a d-dimensional point configuration with local geometry described by W

[69]. If the neighborhoods used by LLE are in fact perfectly locally linear, it can be

shown [4] that

(I −W )T (I −W )f ≈ 1

2
L2f.

Since the eigenvectors of 1
2
L2 coincide with those of L, we note that the LLE embed-

ding may be closely related to the LE embedding if, e.g., the above neighborhood

assumptions are valid.

2.8 Examples

2.8.1 Linear vs. Nonlinear Dimension Reduction

We start with a simple and widely considered example to illustrate the distinc-

tions between linear and nonlinear dimension reduction. In Figure 2.1, we show rep-

resentations of the ‘Swiss Roll’ data set, which is derived by selecting 2000 points at
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random from the corresponding flat, two-dimensional submanifold of R2. Although

the Swiss Roll is essentially a rolled subset of the plane, PCA cannot possibly re-

cover the underlying manifold structure, as it presumes a linear data organization.

Projecting points to the best fitting plane, in this case, invariably forces together

points that were far apart on the underlying data manifold, as can be seen from the

co-mingled points of different colors. Diffusion maps, by contrast, can organize the

points in a manner that broadly respects the manifold structure. Observe, however,

that geodesic distances are not strictly preserved in the embedding. The the ob-

served ‘clumping’ derives from the emphasis on local neighborhood preservation in

Laplacian-based embeddings. The more detailed basis for this clustering effect will

be considered in the following chapter.

2.8.2 An Illustrative Counterexample

Figure 2.2 is derived from [29], and aptly illustrates the fact that non-linear

dimension reduction algorithms can be very sensitive to the input data, and may

not always produce precisely faithful data representations. Plots (A) and (D) show

identical initial sets of 3000 points, uniformly-sampled from the unit square, but

scaled to the areas [0, 81] × [0, 41] and [0, 81] × [0, 39], respectively. Plots (B) and

(E) show the outputs of Laplacian Eigenmaps for inputs (A) and (D), respectively,

while plots (C) and (F) show the corresponding outputs for Diffusion Maps. For both

algorithms, the parameters were kept the same for the two very similar inputs. Still,

there is a pronounced difference in the output structure for the input data shown in
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MANIFOLD LEARNING: THE PRICE OF NORMALIZATION
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Figure 5: (A) and (D) show the same 3000 points, uniformly-sampled from the unit square, scaled
to the areas [0,81]× [0,41] and [0,81]× [0,39], respectively. (B) and (E) show the outputs
of LEM for inputs (A) and (D), respectively. The number of neighbors in both computa-
tions is 8. (C) and (F) show the output for DFM on the same data sets using ( = 2. Note
the sharp change in output structure for extremely similar inputs.

5.1 Two Different Embeddings for a Two-Dimensional Manifold

We start with some definitions. Let X = [x1, . . . ,xN ]′, xi ∈ R2 be the original sample. Without loss
of generality, we assume that

x̄= 0; Cov(X) ≡ + =

(
(2 0
0 )2

)
.

As in Section 4, we assume that (> ). Assume that the input for the normalized-output algorithms is
given by '(X) ⊂ RD where ' : R2 → RD is a smooth function and D ≥ 2 is the dimension of the
input. When the mapping ' is an isometry, we expect %(X) to be small. We now take a close look
at %(X).

%(X) =
N

!
i=1

‖WiXi‖2F =
N

!
i=1

∥∥∥WiX
(1)
i

∥∥∥
2
+

N

!
i=1

∥∥∥WiX
(2)
i

∥∥∥
2
,

where X ( j)
i is the j-th column of the neighborhood Xi. Define e

( j)
i =

∥∥∥WiX
( j)
i

∥∥∥
2
, and note that e( j)i

depends on the different algorithms through the definition of the matricesWi. The quantity e
( j)
i is the

portion of error obtained by using the j-th column of the i-th neighborhood when using the original
sample as output. Denote ē( j) = 1

N "i e
( j)
i , the average error originating from the j-th column.
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Figure 2.2: The above figure from [29] illustrates a result showing that Laplacian

Eigenmaps (LE) and Diffusion Maps (DM) will produce an essentially one dimen-

sional embedding of a two-dimensional point grid whenever its aspect ratio is greater

than two. This is the case for the data in plot D, and the ‘collapsed’ embeddings

produced by LE and DM are shown in plots E and F , respectively. These can be

compared with the more faithful representations produced by the same algorithms

in plots B and C, starting from the only slightly different data in plot A.
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plot (D). While local neighborhood relationships are duly preserved, the simple, two-

dimensional structure of the input data is not well-represented in either non-linear

representation. The authors in fact show that these two normalized output methods

will produce an essentially one dimensional embedding of a two-dimensional point

grid whenever the aspect (width-to-height) ratio of the grid is greater than two.

These examples show that the results of non-linear dimension reduction algorithms

must be carefully assessed for preservation of structural features important to a

particular application.
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Chapter 3

Clustering Properties of Laplacian-Based Data Embeddings

The counterexample of Goldberg et al. [29] presented at the end of the preced-

ing chapter shows that Laplacian-based embeddings do not always provide precisely

faithful representations of manifold-sampled data. But in the context of data repre-

sentations for learning, it is appropriate to consider if and how well other structural

features are preserved under such embeddings. Perhaps the most fundamental con-

cern is cluster structure preservation, as this impacts not just clustering, but also

classification in supervised and semi-supervised formulations. In this chapter, we

show that Laplacian-based embeddings do preserve cluster structure in reasonable

settings. We begin with some motivating results, connecting Laplacian Eigenmaps

to closely related spectral clustering techniques. We then proceed to a somewhat

more illuminating perspective, which views ‘real world data’ with some cluster struc-

ture as a modest perturbation of idealized data with sharper group separation. From

there, results based on matrix perturbation theory can be used to derive a precise

statement about cluster structure preservation under Laplacian Eigenmaps. Some

examples are finally presented to illustrate the theory.
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3.1 Prior Results

Laplacian Eigenmaps can be related to spectral clustering techniques which

approximate optimal graph partitionings [4, 82]. To recognize this, suppose we have

a data graph with associated weight matrix W . We would like to partition our

data into n dissimilar clusters of similar items. In graph theoretic terms, we seek

to minimize the ‘edge flow’ between the clusters C1, ..., Cn. If we let Cc
i denote the

complement of Ci and set W (Ci, C
c
i ) =

∑
u∈Ci,v∈Cci

W (u, v), an immediate idea is to

try and minimize the total inter-cluster edge weight given by

cut(Ci, ..., Cn) =
1

2

k∑

i=1

W (Ci, C
c
i ).

This approach, while tractable, unfortunately often leads to unsatisfactory parti-

tions that largely separate outliers. To capture the desirability of more balanced

partitions, Shi and Malik [72] proposed the following normalized cut

Ncut(Ci, ...Cn) =
n∑

i=1

cut(Ci, C
c
i )

vol(Ci)
,

where vol(Ci) =
∑

u∈Ci degree(u).

Minimizing Ncut is in fact an NP-hard problem [72], but computations pre-

sented in [82] show that an approximation to its solution coincides with the solution

to the eigenvalue problem considered in Laplacian Eigenmaps. To recognize this, let

us represent the problem of minimizing Ncut using the language of linear algebra.

For the collection of n clusters formed from the elements of a set of N data points,
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define the following cluster indicator vectors hj = (h1,j...hN,j)
T by

hi,j =





1/
√
vol(Cj) if vi ∈ Cj,

0 otherwise,

for i = 1, ..., N; j = 1, ..., n. Let H be the matrix formed by considering the n

indicator vectors hj as columns. We can directly verify that hTk hl = 0 for k 6= l,

hTj Dhj = 1, and hTj Lhj = cut(Cj, C
c
j )/vol(Cj). Minimizing Ncut can thus be

written as

min
Ci,...,Cn

trace(HTLH) subject to HTDH = I.

If we relax the requirement that the columns of H are discrete indicator vectors and

substitute U = D1/2H, we obtain

min
U∈RN×n

trace(UTD−1/2LD−1/2U) subject to UTU = I.

This trace minimization problem is solved by the matrix U formed from the first n

eigenvectors of Lsym = D−1/2LD−1/2 along its columns. Premultiplying by D−1/2

the standard eigenvectors of Lsym gives the corresponding generalized eigenvectors

of L, i.e., those eigenvectors that solve Lu = λDu, which are used to construct

the embedding in Laplacian Eigenmaps. From D−1/2U = H, we have that these

generalized eigenvectors also provide the solution to the relaxed formulation of the

Ncut problem. In the normalized spectral clustering algorithm given by Shi and

Malik [72], these eigenvectors are taken to be approximate cluster indicator vectors.

K-means clustering of points formed from the rows of H is then used to separate

the clusters.
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The coordinates of the data points used for clustering coincide with those

constructed for an (n − 1)-dimensional Laplacian Eigenmaps embedding, except

for the initial coordinate. This is because in LE, the initial coordinate would be

excluded as it is derived from the Laplacian matrix eigenvector with eigenvalue

zero, which would be constant for a connected data graph. Although these graph

cut-based results motivate the clustering properties of Laplacian-based embeddings

on a certain level, they still fail to provide precise guarantees of cluster structure

preservation. This is because there is no guarantee relating the quality of the relaxed

solution to that of the original Ncut problem [82].

3.2 Laplacian Eigenmaps with Perturbed Data

To better understand cluster structure preservation under Laplacian-based

embeddings, we first examine how these embeddings are impacted by a perturbation.

Let X̃ ∈ RN×m denote a perturbed instance of our data set X ∈ RN×m, i.e., X̃ =

X + Z, for Z ∈ RN×m, with the entries of Z assumed to be bounded. As with X,

we can construct a data adjacency matrix W̃ ∈ RN×N from X̃, with entries given

by

W̃i,j =





W̃ij = e
−‖x̃i−x̃j‖

2

σ , x̃i is one of the k-nearest neighbors of x̃j, or vice versa,

0, otherwise.

(3.1)

From W̃ , we can construct D̃ with D̃ii =
∑N

j=1 W̃ij, and ultimately L̃ = D̃− W̃ and

the closely related L̃sym = D̃−1/2L̃D̃−1/2.
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Note that the mapping from X̃ to W̃ is discontinuous, as a consequence of the

neighborhood-based sparse adjacency matrix construction presented in (3.1). As a

result, it is not possible to develop a bound based directly on the perturbation given

by Z. Instead, we apply a result of Hunter and Strohmer [43] to characterize the

effect of a Laplacian matrix perturbation on the Laplacian-based embedding. The

overall approach builds on the work of Davis and Kahan in matrix perturbation

theory [21]. In this setting, the notion of an eigengap, sometimes referred to as a

spectral gap, appears frequently. For clarity, we note the following definition, and

then proceed to a foundational result.

Definition 2. Let M ∈ RN×N have the set of ordered eigenvalues λ1, ..., λN , where

the order could be, e.g., λ1 ≤ .... ≤ λN or λ1 ≥ .... ≥ λN , as appropriate. We define

the nth eigengap to be γn = |λn − λn+1|.

Theorem 3 (Hunter and Strohmer). Let A = D−1/2WD−1/2 ∈ RN×N denote the

normalized data adjacency matrix, and let Ã = D̃−1/2W̃ D̃−1/2 ∈ RN×N be the cor-

responding matrix constructed from perturbed data. For 1 ≤ n ≤ N , let Vn(i, ·),

resp. Ṽn(i, ·), be the ith row of the matrix Vn, resp. Ṽn, with columns given by

the n eigenvectors of A, resp. Ã, associated with the n largest eigenvalues. If

γn = λn − λn+1 ≥ α, and λn ≥ α, for α ∈ (0, 1), then

‖Ṽn(i, ·)− Vn(i, ·)Q‖2 ≤ (1 +
√

2)

√
n

α
‖A− Ã‖F ,

where Q is an orthogonal matrix that minimizes ‖Ṽn − VnQ‖F .

The matrix perturbation A− Ã in Theorem 3 is measured using the Frobenius

29



norm, which is defined for M ∈ Rm×n as

‖M‖F =

√√√√
m∑

i=1

n∑

j=1

|Mij|2.

Theorem 3 compares a data embedding based on the first n eigenvectors of A with

one based on its perturbed version Ã, and shows that the corresponding embedded

points are close, up to a unitary transform Q, if the perturbation is small and the

nth eigengap given by γn = |λn−λn+1| is large. Applying Theorem 3, we can charac-

terize the effect of a perturbation under the embedding constructed with Laplacian

Eigenmaps. This embedding is obtained, as described in Section 2.4, using the

eigenvectors associated with the n smallest non-zero eigenvalues in the generalized

eigenvalue problem Ly = µDy. To do so, we specifically establish a perturbation

result for a more general Laplacian-based embedding, using n eigenvectors that solve

Ly = µDy, and are ordered with respect to non-decreasing values of µ. This embed-

ding would include at least one such eigenvector with a corresponding eigenvalue of

zero; see Section 2.6 for details.

Theorem 4. Let L,Lsym, D ∈ RN×N and L̃, L̃sym, D̃ ∈ RN×N respectively denote the

original and perturbed data-derived versions of the Laplacian, normalized Laplacian

(Lsym = D−1/2LD−1/2), and diagonal degree matrices. For 1 ≤ n ≤ N , let Un(i, ·)

be the ith row of the matrix Un ∈ RN×n, with columns given by n eigenvectors

that solve Ly = µDy, and are ordered by non-decreasing values of µ, starting from

µ = 0. Let Ũn(i, ·) be the ith row of the matrix Ũn ∈ RN×n with columns given by the

corresponding set of eigenvectors solving L̃y = µD̃y. Finally, let E(i) = D̃1/2(i, i)−

D1/2(i, i) denote the point-specific connectivity perturbation. If γn = µn+1−µn ≥ α,
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and µn ≤ (1− α), for α ∈ (0, 1), then we have

‖Ũn(i, ·)−Un(i, ·)Q‖2 ≤ D−1/2(i, i)

[
(1 +

√
2)

√
n

α
‖L̃sym − Lsym‖F + ‖E(i)Ũn(i, ·)‖2

]
,

where Q is an orthogonal matrix that minimizes ‖D̃1/2Ũn −D1/2UnQ‖F .

Proof. Let Vn ∈ RN×n denote the matrix with columns given by the eigenvectors

associated with the n largest eigenvalues of A = D−1/2WD−1/2, and let Vn(i, ·) be

the ith row of Vn. Let Ṽn and Ṽn(i, ·) indicate the corresponding entities obtained

starting from Ã = D̃−1/2W̃ D̃−1/2. Our approach is to relate ‖Ũn(i, ·) − Un(i, ·)Q‖2

to the quantity that is bounded by Theorem 3, namely ‖Vn(i, ·)Q− Ṽn(i, ·)‖2.

Note that since Lsym = D−1/2LD−1/2 = I − A, we have

Lsymy = µy ⇐⇒ Ay = (1− µ)y. (3.2)

As a result, a set of eigenvectors associated with the n largest eigenvalues of A will

also provide a set of eigenvectors corresponding to the n smallest eigenvalues of

Lsym. We additionally have

Ly = µDy ⇐⇒ Lsym(D1/2y) = µ(D1/2y). (3.3)

Let µ1 ≤ ... ≤ µN denote the eigenvalues of L in the generalized eigenvalue problem

Ly = µDy, and let λ1 ≥ ... ≥ λN denote the eigenvalues of A. From (3.2) and (3.3),

we have µi = 1− λi and thus

µn+1 − µn ≥ α, µn ≤ (1− α) ⇐⇒ λn − λn+1 ≥ α, λn ≥ α

holds, as is necessary to apply Theorem 3.
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From (3.2) and (3.3), and the construction of Un, resp. Ũn, with columns given by

eigenvectors that solve Ly = µDy, resp., L̃y = µD̃y, it follows that

Vn = D1/2Un, Ṽn = D̃1/2Ũn. (3.4)

With Un(i, ·), resp. Ũn(i, ·), denoting the ith row of the matrix Un, resp. Ũn, we thus

have

Vn(i, ·) = D1/2(i, i)Un(i, ·) and

Ṽn(i, ·) = D̃1/2(i, i)Ũn(i, ·) = [D1/2(i, i) + E(i)]Ũn(i, ·).

We can accordingly write

‖Vn(i, ·)Q− Ṽn(i, ·)‖2 = ‖D1/2(i, i)Un(i, ·)Q− (D1/2(i, i) + E(i))Ũn(i, ·)‖2

= ‖D1/2(i, i)Un(i, ·)Q−D1/2(i, i)Ũn(i, ·)− E(i)Ũn(i, ·)‖2

≥ D1/2(i, i)‖Un(i, ·)Q− Ũn(i, ·)‖2 − ‖E(i)Ũn(i, ·)‖2

or

‖Un(i, ·)Q− Ũn(i, ·)‖2 ≤ D−1/2(i, i)[‖Vn(i, ·)Q− Ṽn(i, ·)‖2 + ‖E(i)Ũn(i, ·)‖2],

from which the result follows, upon applying the bound on ‖Vn(i, ·)Q − Ṽn(i, ·)‖2

presented in Theorem 3, and noting that ‖A − Ã‖F = ‖L̃sym − Lsym‖F , and from

(3.4), that

‖Ṽn − VnQ‖F = ‖D̃1/2Ũn −D1/2UnQ‖F .

3.3 Cluster Structure Preservation with Laplacian Eigenmaps

Theorem 4 precisely characterizes the effect of a Laplacian matrix perturbation

on the Laplacian-based embedding. This provides an avenue for understanding how
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cluster structure is represented under such an embedding. Our approach is to regard

realistic, e.g., noisy, data with cluster structure as a perturbation of data in which

clusters are better separated and more apparent. For a basic example, consider the

sets of four clusters in the plane shown in Figure 3.1. Between cluster set A and

cluster set B, there is clearly a substantial difference in the inter-cluster distances.

But, the data adjacency matrices W and W̃ constructed from cluster set A and

cluster set B, respectively, will emphasize local neighborhood relationships. Thus,

the corresponding Laplacian matrices L and L̃ will differ only modestly. In partic-

ular, L̃ will record associations that are not present in L, e.g., between neighboring

points at the periphery of different clusters.

Viewing L̃ as a modest perturbation of L, we can apply Theorem 4 to un-

derstand the embedding of adjacent clusters in terms of the embedding of well-

separated clusters. To do so, we first characterize the Laplacian-based embedding

of well-separated clusters, e.g., clusters for which the data graph represented by W

has cluster-specific connected components. Proposition 3 below shows that such sep-

arated clusters are mapped to orthogonally separated points, and are additionally

organized according their intra-cluster connectivity. A related result has been estab-

lished for a form of spectral clustering based on the eigenvectors of Lsym [60]. The

n-dimensional embedding points associated with the latter method are additionally

normalized to lie on the unit sphere in Rn, yielding a different data representation

from the Laplacian-based embedding analyzed in this section.
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Figure 3.1: (A) Cluster Set A: four well-separated clusters. (B) Cluster Set B: four

adjacent clusters, with points derived by translating points shown in Cluster Set A

toward the origin.

Proposition 3. Let X ∈ RN×m be a data set with elements xi = X(i, ·) ∈ Rm. Sup-

pose that each point xi is assigned to one of n clusters, C1, ..., Cn, and furthermore,

that the data adjacency matrix W is constructed so that

∑

i∈Ck

∑

j∈Cl

W (i, j) = 0 if k 6= l,

i.e., there are cluster-specific connected components in the underlying data graph,

where we write i ∈ Ck to indicate an index i such that xi ∈ Ck. Let L = D −W

denote the Laplacian matrix constructed from W, with D(i, i) =
∑N

j=1W (i, j). Then

L has exactly n eigenvectors u1, ..., un that solve Luk = µDuk with µ = 0. If

Un ∈ RN×n is a matrix with uk in the kth column, and we use Un(i, ·) to denote the

representation of xi constructed from the ith row of Un, then there exist c1, ..., cn ∈ Rn

such that

Un(i, ·) = ck for all i such that xi ∈ Ck,
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i.e., we have cluster-specific embedding points, and furthermore,

cTk cl = 0 if k 6= l.

In addition, if the uk are scaled so that uTkDuk = 1, then

‖ck‖2 =
1√

V ol(Ck)
,

where V ol(Ck) =
∑

i∈Ck D(i, i).

Proof. From the construction of W such that the data graph has cluster-specific

connected components, it follows from the basic properties of Laplacian matrices

that L has exactly n eigenvectors u1, ..., un that solve Luk = µDuk with µ = 0; see

Proposition 1 in Section 2.6 for details.

Since we have, for Lsym = D−1/2LD−1/2,

L(D−1/2vk) = µD(D−1/2vk) ⇐⇒ Lsymvk = µvk, (3.5)

we can obtain the eigenvectors uk that solve Luk = µDuk with µ = 0 by pre-

multiplying by D−1/2 the standard eigenvectors vk that solve Lsymvk = µvk with

µ = 0.

To proceed further, note that we can assume, without loss of generality, that

the points x1, ...xN are ordered with respect to cluster membership. Accordingly,

the matrix Lsym will be block diagonal with cluster-specific component Laplacians

Lsym =




L
(1)
sym

L
(2)
sym

. . .

L
(n)
sym




.
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One can verify that the eigenspace of eigenvalue zero for Lsym is spanned by n

eigenvectors given by the columns of

D1/2U = D1/2




1(1)

1(2)

. . .

1(n)




∈ RN×n,

where each 1(k) denotes an all ones column vector with length equal to |Ck|. These

eigenvectors are typically normalized, and we can represent a set of eigenvectors

spanning the zero eigenspace of Lsym as the columns of

D1/2USR ∈ RN×n,

where S ∈ Rn×n is a diagonal scaling matrix given by

S =




1√
V ol(C1)

1√
V ol(C2)

. . .

1√
V ol(Cn)




,

and R ∈ Rn×n is any orthogonal matrix.

It now follows from (3.5) that Un = USR ∈ RN×n is a matrix whose columns

contain the eigenvectors uk that solve Luk = µDuk with µ = 0. From the construc-

tion of Un, it is clear that each embedded point Un(i, ·) is given by a cluster-specific

row of SR ∈ Rn×n. Let ck ∈ Rn denote the kth row of SR. Since the rows of SR

are orthogonal, we have

cTk cl = 0 if k 6= l.
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Finally, from the construction of S and RTR = I, it follows that

‖ck‖2 =
1√

V ol(Ck)
.

Proposition 3 shows that for a data set X with well-separated clusters C1, ...Cn,

the cluster structure is accentuated in the embedded space, with xi ∈ Ck collapsing

to a single cluster-specific point ck ∈ Rn in the embedding. Combining Theorem 4

and Proposition 3 we obtain the following result.

Proposition 4. Let X ∈ RN×m be a data set with elements xi = X(i, ·) ∈ Rm.

Suppose that each point xi is assigned to one of n clusters, C1, ..., Cn, and further-

more, that the data adjacency matrix W ∈ RN×N is constructed so that there are

cluster-specific connected components in the underlying data graph. Let X̃ ∈ RN×m

be a perturbation of X, with x̃i = X̃(i, ·) ∈ Rm retaining the cluster assignment of

xi, and let W̃ ∈ RN×N denote the data adjacency matrix constructed from X̃. Let

L,Lsym, D ∈ RN×N and L̃, L̃sym, D̃ ∈ RN×N respectively denote the Laplacian, nor-

malized Laplacian (Lsym = D−1/2LD−1/2), and diagonal degree matrices constructed

from W and W̃ . Let Ũn(i, ·) be the ith row of the matrix Ũn ∈ RN×n with columns

given by n eigenvectors that solve L̃y = µD̃y and are ordered by non-decreasing val-

ues of µ, starting from µ = 0. Let Un(i, ·) be the ith row of the matrix Un ∈ RN×n,

with columns given by the corresponding set of eigenvectors solving Ly = µDy. Let

ỹi = Ũn(i, ·) denote the point representing x̃i in the n-dimensional Laplacian-based

embedding constructed as described from L̃, and let ck ∈ Rn indicate the cluster-

specific embedding point for xi ∈ Ck. Finally, let E(i) = D̃1/2(i, i) − D1/2(i, i)
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denote the connectivity perturbation associated with x̃i. If γn = µn+1 − µn ≥ α, and

µn ≤ (1− α), for α ∈ (0, 1), then we have

‖ỹi − ckQ‖2 ≤ D−1/2(i, i)

[
(1 +

√
2)

√
n

α
‖L̃sym − Lsym‖F + ‖E(i)Ũn(i, ·)‖2

]
,

where Q is an orthogonal matrix that minimizes ‖D̃1/2Ũn −D1/2UnQ‖F .

Proof. Note that in the theorem statement, we set ỹi = Ũn(i, ·). From Proposition 3,

we have Un(i, ·) = ck for xi ∈ Ck, whenever the data adjacency matrix W associated

with X has cluster-specific connected components. With these substitutions, the

result follows directly from Theorem 4.

Basic results from spectral graph theory show that the eigengap γn is large

whenever n coherent clusters are present, i.e., no ‘bottleneck edges’ exist that can be

cut to subdivide existing clusters in a balanced way [15]. Proposition 4 thus shows

that embedded points derived from the less separated clusters in X̃ deviate from

the cluster-specific points associated with the well-separated clusters in X according

to a bound governed by the initial cluster coherence and point-specific connectivity

strength in X, and notably, the inter-cluster connectivity that emerges in X̃. These

attributes are indicated by α, the magnitude of the lower bound on the eigengap γn,

and for a point x̃i, the factor D−1/2(i, i), and the terms ‖L̃sym − Lsym‖F and E(i).

These ideas are illustrated by the example shown in Figure 3.2. We start with

three clusters concentrated on roughly semi-circular curves in the plane. Although

the clusters are well-separated, their boundaries are non-convex and k-means clus-

tering will not reveal the visually apparent cluster structure. However, from the
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preceding discussion, it follows that a reasonable construction of the Laplacian ma-

trix will embed the points in three-dimensional space, with cluster-associated points

mapped to mutually orthogonal points. With Laplacian Eigenmaps, the first, con-

stant eigenvector associated with eigenvalue zero is typically discarded. The em-

bedding in terms of the second and third eigenvectors is thus a projection of the

orthogonally separated, cluster-mapped points onto the plane. These points are

still well-separated, and k-means clustering in the embedded space has no difficulty

exposing the true cluster structure.

Figure 3.3, shows a more realistic case of less clearly separated clusters. In the

presented theoretical framework, the data-derived Laplacian matrix is regarded as a

perturbed version of the Laplacian for the previous case of well-separated clusters.

In keeping with the results relating the original and perturbed case embeddings,

note that the cluster structure is still clearly revealed in the embedded space, with

only modest distortion relative to the original, well-separated case. K-means, or any

other reasonable clustering algorithm, can still readily discern the clusters. These

simple examples still illustrate a notable advantage of clustering in the Laplacian-

mapped space. Namely, the ability to detect a broader range of cluster structure,

including non-convex patterns.
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Figure 3.2: Clustering of well-separated non-convex clusters in original and

Laplacian-mapped spaces.

Figure 3.3: Clustering of less separated non-convex clusters in original and

Laplacian-mapped spaces.
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Chapter 4

Information Fusion

4.1 Introduction

In this chapter, we present techniques for two distinct types of data fusion.

In the first instance, we have a collection of data sets X1, ..., XM , with each data

set providing a different ‘view’ of a fixed set of elements. Points in each data set

can be related with data set-specific kernels W1, ...,WM , and a direct approach for

information fusion is to combine the latter kernels into a ‘fusion kernel’ WF . The

fusion kernel WF can then be applied within the Laplacian-based data representation

framework introduced in Chapter 2, and further characterized in Chapter 3.

This sort of multi-kernel information fusion is directly applicable when we aim

to combine data sets providing different observations of a single collection of entities.

In this context, there is a clear, bijective correspondence between elements of the

various data sets X1, ..., XM . While this fusion model fits numerous applications

in which multiple data sets provide alternative measurements of the same entities,

it is not appropriate for instances in which the aim is to relate data describing

fundamentally distinct sets of elements. Suppose instead that we have two data

sets X and Y , and there is no fully specified bijective correspondence between their

elements. At the same time, there are known or expected relationships between at

least certain elements across the data sets. At the level of the underlying data graphs
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ΓX and ΓY , we might expect subgraphs with similar structure and corresponding

elements. In Section 4.3, we present an algorithm for organizing the related, but

heterogeneous elements underlying data sets X and Y in a single joint embedding.

Our starting point is an extension of the Diffusion Maps framework developed by

Coifman and Hirn [17], which allows us to identify points that can be used to ‘align’

the data graphs ΓX , ΓY and construct a joint embedding.

4.2 Multi-Kernel Information Fusion

Suppose we have a collection of data sets X1, ..., XM , with Xl ∈ RN×Dl for

l = 1, ...,M . Each data set provides a different collection of measurements for a fixed

set of N elements, with the ith element in the data set Xl denoted by Xl(i, ·) ∈ RDl .

With data set-specific choices for the kernel bandwidth and neighborhood set size

parameters, indicated by σl and kl respectively, we can construct data adjacency

matrices Wl ∈ RN×N , with entries given by

Wl(i, j) = e
−‖Xl(i,·)−Xl(j,·)‖

2

σl ,

if Xl(i, ·) is among the kl nearest neighbors of Xl(j, ·), or vice versa, and Wl(i, j) = 0

otherwise. More generally, we can suppose that Wl is a symmetric, non-negative-

valued kernel matrix with entries relating pairs of elements in Xl.

Define

W = {W ∈ RN×N | W T = W and W (i, j) ≥ 0 for all i, j ∈ 1, ..., N}

to be the set of N×N kernel matrices. A natural approach for information fusion is

to apply a function F :WM →W to combine the set of kernels given by W1, ....,WM
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into a single kernel WF . This ‘fusion kernel’ WF can then be applied within the

Laplacian-based data representation framework, with the significant eigenvectors

of the fusion Laplacian matrix LF used to construct an embedding that integrates

features provided by the data sets X1, ...XM . The precise specification of F , i.e.,

the construction of the fusion kernel WF , is to a substantial extent application

dependent. In this section, we briefly outline some broad approaches, together

with a few associated observations. A particular application of this multi-kernel

information fusion approach is presented in Section 5.2.

Two direct approaches for kernel integration are to construct linear combina-

tions of data set-specific kernels, i.e.,

WFs =
M∑

l=1

αlWl,

or weighted pointwise products of kernels, i.e., form WFp , with entries given by

WFp(i, j) =
M∏

l=1

αlWl(i, j).

An ‘unbiased’ fusion approach would set αl = 1 for l = 1, ...,M in either case. The

two approaches induce different types of data graphs, and thus different sorts of

integrative embeddings. In particular, the pointwise product kernel WFp will em-

phasize data element relationships that are strong across the full collection of data

sets. Weaker associations recorded by two or more kernels will negatively reinforce

one another to produce further reduced entries, and clearly if Wl(i, j) ≈ 0 in even a

single kernel, we will have WFp(i, j) ≈ 0. Where there is some heterogeneity across

the data sets Xl, use of WFp often yields data graphs with multiple connected com-

ponents, grouping data elements that are consistently related across the collection
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of data sets. In some application contexts, these may directly represent meaningful

clusters, but often, they also group large numbers of data elements which must be

further sub-divided using connected component-specific Laplacian embeddings. If

the specific application does not suggest ‘disconnecting’ points that are not sub-

stantially related across the full collection of data sets X1, ...XM , it is perhaps more

appropriate to apply the linear combination-based fusion kernel WFs .

With both the linear combination and the pointwise product-based kernel

fusion approaches, an additional detail is selection of the weights αl. As noted, a

direct approach is to set these equally to one, or otherwise, to weight particular

kernels based on application-specific considerations, such as the relative importance

or reliability of their associated data sets. Alternatively, for the particular case of

fusion with two kernels, W1 and W2, a direct grid search could be used to select a pair

of weights that maximizes a suitable measure of embedding quality. In particular, if

Yα1,α2 ∈ RN×d denotes an embedding derived from the fusion kernel α1W1 + α2W2,

and Q : RN×d → R is a function specifying the embedding quality, we would select

arg max
(α1,α2)∈A1×A2

Q(Yα1,α2),

where A1 and A2 are sets of candidate values for α1 and α2, respectively. The same

approach could clearly be applied to optimize the weights in a pointwise product of

two kernels W1 and W2. Note that the function Q in the described scheme could

generally represent a computational procedure that returns a measure of embedding

quality. For example, if the aim is to select a kernel fusion-based embedding that

maximizes cluster structure, Q could apply a clustering algorithm to the embedded

44



data and return a measure of the cluster quality.

4.3 Joint Embeddings for Heterogeneous Data Fusion

In this section, we present an algorithm for a more general sort of data fusion,

where the aim is to co-organize two data sets, X and Y , recording measurements of

distinct but at least partially related underlying elements. In particular, the algo-

rithm constructs a joint embedding which further reveals these relationships between

the data sets, while attempting to preserve the intrinsic relations between elements

within each data set. Our starting point is an extension of the diffusion maps frame-

work developed by Coifman and Hirn [17]. The authors consider a fixed set of data

elements, and a collection of data sets Xα parameterized by α ∈ I. While the data

set elements are unchanged over the Xα, the relationships between these elements

can vary. These changes are captured in the data, and modeled as alterations to

the derived data graphs Γα. For a fixed α, a diffusion map can be constructed as

described in [18], to embed the data according to the geometry represented by the

data graph Γα; see also Subsection 2.7.1. But, for different parameters α and β, the

embeddings of Xα and Xβ are to distinct spaces, and direct comparisons between

mapped data set elements across the parameterized contexts are not possible. Coif-

man and Hirn generalize the diffusion maps framework to define formulas for the

distance between points in different embeddings. They additionally define a map-

ping from one embedding to another. In this joint embedding, diffusion distance

relationships within each data set are preserved, while corresponding points derived
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from different data sets are organized according to a generalized diffusion distance

which measures how much the local subgraph around each point changes over the

parameter space.

The diffusion maps framework for changing data developed by Coifman and

Hirn presumes an explicit bijection between data set elements across the Xα. We

adapt this approach to the fusion of heterogeneous data sets X and Y by starting

with an initial, tentative bijection between related elements across the data sets.

This bijection can be constructed using prior knowledge or some objective analysis of

the data. A Coifman-Hirn algorithm-based joint embedding of the data, constructed

with respect to this bijection, is then used to identify corresponding points with

genuinely similar local neighborhood structure. If these paired points are sufficiently

representative of the two data sets, they can be used as ‘hooks’ to meaningfully

align their respective data graphs and construct a joint embedding. We consider

the paired points to be sufficiently representative of their associated data sets if each

provides a frame, i.e., at least a spanning set, for its larger data set. Our approach

starts with the Coifman-Hirn embedding of the paired data. Other data points are

then embedded as linear combinations of the embedded paired points, with specific

linear combination weights derived from the data set-specific frame reconstruction

coefficients.

To present this approach for jointly embedding heterogeneous data in more

detail, we start by reviewing essential elements of the Coifman-Hirn generalization

of diffusion maps to support changing data. After a summary of frames and tech-

niques for constructing sparse, frame-based data representations, we describe the
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joint embedding algorithm. Details of the algorithm, such as the construction of the

initial bijection relating elements of the data sets, are application dependent and

amenable to some adjustment. A particular case study is presented in Subsection

5.3.4.

4.3.1 Diffusion Maps for Changing Data

The Coifman-Hirn generalization of diffusion maps assumes that the data

points are drawn from a single measure space (X,µ), which changes over the pa-

rameter space I. There are no restrictions on I, i.e., it can be discrete, continuous,

or arbitrary, but the underlying point distribution represented by the measure µ is

assumed to be fixed. The change in (X,µ) being considered is instead with respect

to the relationships between points. This evolution is precisely described by a family

of metrics dα : X×X → R, and for each α ∈ I, there is thus a metric measure space

Xα = (X,µ, dα), for which one can construct a kernel kα : X × X → R, together

with a weighted data graph Γα , (X, kα). For the results summarized below, it is

further assumed that the kernel kα is positive definite and symmetric for all α ∈ I.

To allow comparison of geometric structures of X across the parameter space I,

the diffusion maps framework reviewed in Subsection 2.7.1 is adjusted. In particular,

for each parameter α ∈ I, the density mα : X → R is defined as

mα(x) ,
∫

X

kα(x, y) dµ(y), for all α ∈ I, x ∈ X,

with the assumption that mα ∈ L1(X,µ), for all α ∈ I, and mα(x) > 0 for all α ∈ I
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and x ∈ X. From here, the parameterized kernel aα : X ×X → R is given by

aα(x, y) ,
kα(x, y)√

mα(x)
√
mα(y)

, for all α ∈ I, (x, y) ∈ X ×X,

together with its corresponding integral operator Aα : L2(X,µ)→ L2(X,µ), where

(Aαf)(x) ,
∫

X

aα(x, y)f(y)dµ(y), for all α ∈ I, f ∈ L2(X,µ). (4.1)

Finally, let a
(t)
α denote the kernel of the integral operator A

(t)
α , which allows a mul-

tiscale analysis of the data based on advancing the Markov chain by t time steps.

With these definitions, Coifman and Hirn introduce the following generalized

diffusion distance.

Definition 3 (Dynamic Diffusion Distance). Let xα , (x, α) ∈ X × I. For each

diffusion time t ∈ N, the dynamic diffusion distance D(t) : (X × I)× (X × I)→ R

is defined as

D(t)(xα, yβ)2 , ‖a(t)
α (x, ·)− a(t)

β (y, ·)‖2
L2(X,µ)

=

∫

X

(a(t)
α (x, u)− a(t)

β (y, u))2 dµ(u).

We can understand the diffusion distance by fixing a point x ∈ X, and considering

the function a
(t)
α (x, ·) together with the data graph Γα. If a unit of mass is placed

on the node x and allowed to diffuse over Γα, the quantity of mass that has spread

from x to y over t time steps is proportional to a
(t)
α (x, y). The time t diffusion

distance between x and y thus compares the pattern of diffusion centered at x

with the corresponding pattern centered at y. These patterns are based on the local

connectivity structure around these points, so if the neighborhood of xα is similar to
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that of yβ, their diffusion distance will be small. In particular, the dynamic diffusion

distance between xα and xβ precisely measures the change in neighborhood structure

around the point x between the two parameterized contexts.

Under some mild assumptions indicated in [17], it can be shown that the opera-

tors Aα are compact, positive definite, and self-adjoint. From the Spectral Theorem,

it thus follows that each operator Aα has a countable set of positive eigenvalues and

orthonormal eigenfunctions, and that the latter eigenfunctions provide a basis for

L2(X,µ). Let {λ(i)
α }i≥1 and {ψ(i)

α }i≥1 denote these eigenvalues and a set of orthonor-

mal eigenfunctions, respectively. Coifman and Hirn show that as with the original,

single data set diffusion distance, the generalized diffusion distance can be expressed

in terms of the spectral decompositions of the relevant operators. In particular:

D(t)(xα, yβ)2 =
∑

i≥1

(λ(i)
α )2tψ(i)

α (x)2 +
∑

j≥1

(λ
(j)
β )2tψ

(j)
β (y)2

−2
∑

i,j≥1

(λ(i)
α )t(λ

(j)
β )tψ(i)

α (x)ψ
(j)
β (y)〈ψ(i)

α , ψ
(j)
β 〉L2(X,µ).

Note, as shown in [17], that we have

1 = λ(1)
α ≥ λ(2)

α ≥ λ(3)
α ≥ ...,

with λ
(i)
α → 0 as i → ∞. It thus follows that the diffusion distance can be well

approximated by a small number of eigenvalues and eigenfunctions of the operators

Aα and Aβ, if their spectra decay sufficiently fast.

For the parameter α and diffusion time t, the diffusion map Ψ
(t)
α : X → `2 is

defined as

Ψ(t)
α (x) ,

(
(λ(i)

α )tψ(i)
α (x)

)
i≥1

. (4.2)
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While each diffusion map Ψ
(t)
α sends X into an `2 space specific to α, the general-

ized diffusion distance allows distances to be meaningfully computed between two

diffusion embeddings. Conveniently, it is possible to map one such embedding into

another using an operator similar to the change of basis operator. In particular,

define Oβ→α : `2 → `2 as

Oβ→αv ,

(∑

j≥1

v[j]〈ψ(i)
α , ψ

(j)
β 〉L2(X,µ)

)

i≥1

, for all v ∈ `2. (4.3)

Using the operator Oβ→α, one can construct a joint embedding which relates points

originally in separate embeddings according to the generalized diffusion distance,

while also preserving the initial, intra-embedding diffusion distances.

4.3.2 Frames and Sparse Data Representation

Frames, introduced by Duffin and Schaeffer in 1952 [24], generalize bases to

provide robust and flexible representations of vectors. A basis for a finite dimensional

Hilbert space H is a set that can be used to uniquely represent each element of

H. A frame for H, on the other hand, may include elements which are linearly

dependent. Such overcomplete sets allow for an infinite number of representations

of a given element in H. In signal coding applications, this underlying redundancy

often enables resilience in the face of erasures and other sorts of errors [12, 31]. More

generally, as overcomplete systems, frames can be flexibly designed to concentrate

representation elements in specific regions of the data space, enhancing resolution

of application-relevant data features. This aspect of frames is useful in the context

of the joint embedding algorithm presented in Subsection 4.3.3 .
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To introduce frames in general terms, let I be a possibly infinite, but countable,

index set. A sequence F = {fi}i∈I in a separable Hilbert space H is a frame for H

if there exist 0 < A ≤ B <∞ such that

A‖f‖2 ≤
∑

i∈I

|〈f, fi〉|2 ≤ B‖f‖2 ∀f ∈ H. (4.4)

A and B are lower and upper frame bounds, and when these can be chosen as A = B,

F is called an A-tight frame, with the particular case of A = B = 1 commonly

referred to as a Parseval frame.

There are three fundamental operators in frame theory:

• The analysis operator TF : H 7→ `2(I) given by TFf = {〈f, fi〉}i∈I maps a

signal f ∈ H to the representation space `2(I).

• A mapping from the representation space back to H is provided by the syn-

thesis operator, which is defined as the adjoint operator T ∗F : `2(I) 7→ H given

by T ∗F({ci}i∈I) =
∑

i∈I cifi.

• Composing TF and T ∗F gives the frame operator SF : H 7→ H, SFf = T ∗FTFf =

∑
i∈I〈f, fi〉fi, which is positive-definite, self-adjoint, and invertible.

Given a frame F = {fi}i∈I , we have the reconstruction formula

f =
∑

i∈I

〈f, fi〉S−1
F fi =

∑

i∈I

〈f, S−1
F fi〉fi ∀f ∈ H, (4.5)

where {SF−1fi}i∈I is the canonical dual frame. When F is redundant, there exist

infinitely many dual frames {f̃i}i∈I , but the canonical dual will satisfy the least

51



squares property among all dual frames {f̃i}i∈I , i.e.,

∑

i∈I

|〈f, S−1
F fi〉|2 ≤

∑

i∈I

|〈f, f̃i〉|2 ∀f ∈ H. (4.6)

Note that for A-tight frames, we have S−1 = 1
A
I, giving the simple reconstruction

formula f = 1
A
T ∗FTFf , for all f ∈ H. In this case, we see that a frame-based

decomposition is essentially as efficient and convenient as one using an orthonormal

basis. If H is an n-dimensional Hilbert space, a frame is easy to characterize: the

k-element collection of vectors {fi}ki=1 is a frame for H if and only if it spans H. The

redundancy of such a frame is the quantity k
n
. More information on the robustness

and flexibility afforded by frames can be found in [47, 48]. For derivation of the

basic properties summarized above, see also [14].

While the reconstruction formula presented in Equation 4.5 yields a set of

representation coefficients with minimal `2 norm, this may not be the most desirable

representation in many application contexts. Suppose that {fi}ki=1 is a frame for

Fn, where F = R or C. Given f ∈ Fn, we may wish to reconstruct f using the

smallest possible number of frame elements. This could be seen as resolving the

most important features of f . Note that in the presence of noisy or imperfect

data, it may be preferable to seek only an approximate reconstruction. If the frame

elements {fi}ki=1 are organized along the columns of an n × k matrix A, we would

thus like the sparsest possible vector of representation coefficients c ∈ Fk solving the

following problem.

arg min
c
‖c‖0 subject to ‖Ac− f‖2 ≤ ε. (4.7)

Unfortunately, the above `0-sparse approximation problem has been proved to be

52



NP-hard [59].

In the face of this intractability, a leading approach is to solve the following

convex relaxation of the above problem.

arg min
c
‖c‖1 subject to ‖Ac− f‖2 ≤ ε. (4.8)

When ε = 0, this is known as the basis pursuit problem, and Chen, Donaho and

Saunders [13] show that the associated `1 minimization often leads to sparse solu-

tions. This additionally holds for the more general case of ε > 0, which is described

as the basis pursuit de-noise problem; see [11, 22, 79] for further details. The basis

pursuit problem can be formulated and solved as a linear program [13]. Scalable

methods have additionally been developed to solve the basis pursuit de-noise prob-

lem; see, for example, [80]. For additional background on frames and frame-based

representations, together with development and application of frame theory in the

context of kernel eigenmap methods, including Laplacian Eigenmaps, see [27, 38].

4.3.3 Algorithm Description

With the preceding background established, we present a novel algorithm for

constructing a joint embedding of heterogeneous data sets X and Y , derived from

distinct and non-overlapping collections of elements. As described at the beginning

of the section, our approach is to start with a tentative bijection relating subsets of

elements in X and Y . Diffusion maps embeddings are computed using these matched

data sets, and then the Coifman-Hirn algorithm-associated operator presented in

(4.3) is used to map one embedding into the representation space of the other.
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The theory summarized in Subsection 4.3.1 indicates that nearby points in this

joint embedding have similar local neighborhood structure. By selecting minimally

separated ‘mixed pairs’, consisting of embedded points derived from data sets X

and Y , we can try to align the embeddings around data elements for which the

initial bijection is most accurate. We require an adequate set of alignment points,

and in particular, we seek a set of pairs for which the corresponding elements in

the original data spaces form at least a spanning set or frame. Each element of

X and Y can be represented using the data space-specific frame elements, and in

keeping with the ideas presented in Subsection 4.3.2, we seek a sparse representation.

A final joint embedding is then constructed by mapping each data set element to

a frame representation coefficient-weighted linear combination of jointly embedded

frame elements.

54



Algorithm Frame-Based Joint Data Embedding
INPUTS:

- Data sets X ∈ RNX×dX and Y ∈ RNY ×dY .

- Bijection between N -element subsets of X and Y , with max(dX , dY ) ≤ N ≤

min(NX , NY ), and corresponding elements specified along the rows ofX ′ ∈ RN×dX

and Y ′ ∈ RN×dY .

- Neighborhood sizes: kX , kY ∈ N.

- Spectral alignment parameters: target value for 2nd eigenvalue γ2 ∈ (0, 1);

spectral decay threshold γd ∈ (0, 1).

- Minimum frame size: NF ≥ max(dX , dY ).

OUTPUT:

- Joint Embedding Z ∈ R(NX+NY )×d of data sets X and Y .

(1) Align Operator Spectra:

- Set σX to be the median of the squared distances to the kX-th nearest neighbor

over points in X ′; set σY similarly based on Y ′.

- Using the matched data sets X ′ and Y ′, construct the kernels KX , KY ∈ RN×N ,

with KX(i, j) = e
−‖xi−xj‖

2

σX , KY (i, j) = e
−‖yi−yj‖

2

σY , together with the diagonal ma-

trices DX , DY ∈ RN×N with DX(i, i) =
∑N

j=1KX(i, j), DY (i, i) =
∑N

j=1 KY (i, j).

- Construct the diffusion operators AX = D
−1/2
X KXD

−1/2
X , AY = D

−1/2
Y KYD

−1/2
Y ;

adjust σX , σY if necessary so that the second eigenvalues of AX , AY are approxi-

mately equal to γ2.

- Set the joint embedding dimension to be the smallest integer d such that the

eigenvalues λ
(i)
X of AX and λ

(i)
Y of AY , ordered by non-increasing magnitude, are

less than γd for all i > d.
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Algorithm Frame-Based Joint Data Embedding (continued)

(2) Construct Diffusion Map Embeddings:

- Set ΛX ,ΛY ∈ Rd×d to be diagonal matrices containing the d largest eigenvalues,

in non-increasing order, of AX and AY , respectively. Let VX , VY ∈ RN×d be

matrices containing the corresponding top d eigenvectors along their columns.

- Construct the diffusion map embeddings MX ,MY ∈ RN×d of X ′ and Y ′, respec-

tively, by computing MX = VXΛX , MY = VY ΛY .

(3) Construct Initial Joint Embedding:

- Apply the Coifman-Hirn algorithm-associated operator specified in (4.3) to map

the embedded points in MX into the embedding space associated with MY . In

particular, set MX→Y = (V T
Y VXM

T
X)T .

(4) Identify Frames:

- Compute the pairwise Euclidean distances between points specified along the

rows of MX→Y and MY in the joint embedding space and rank non-overlapping

pairs in order of increasing separation distance.

- Find the smallest N ′F ≥ NF such that the original data space representations

of the components of the N ′F nearest embedded pairs span, respectively, RdX and

RdY .

- Construct the matrices FX ∈ RdX×N ′F and FY ∈ RdY ×N ′F containing these frame

elements for the original data spaces along their columns, and let ZFX , ZFY ∈

RN ′F×d denote matrices containing the joint embedding space representations of

these frame elements along their rows.
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Algorithm Frame-Based Joint Data Embedding (continued)

(5) Construct Final Joint Embedding:

- For xi ∈ X (resp. yi ∈ Y ), compute a set of frame representation coefficients with

respect to FX (resp. FY ) by solving the sparse representation or approximation

problem presented in (4.8). Organize these representation coefficients along the

rows of CX ∈ RNX×N ′F (resp. CY ∈ RNY ×N ′F ).

- Compute the final joint embedding by mapping each original space point to

an appropriate frame representation coefficient-weighted linear combination of

embedded frame elements:

Z(1 : NX , :) = CXZFX ,

Z((NX + 1) : (NX +NY ), :) = CYZFY .
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Chapter 5

Case Studies in Biomedical Data Analysis

5.1 Nonlinear gene cluster analysis with labeling for microarray gene

expression data in organ development

5.1.1 Background

Common variations in genetic and epigenetic patterns among humans are as-

sociated with variations in risk for developing all common chronic diseases, a few of

which have been identified from genome-wide polymorphism screens [10, 86]. The

functional biological robustness or its failure in disease is most likely not just re-

flected in a few dominant components, but in many complex interactions within

gene regulatory networks. Due to the overwhelming complexity, the deeper under-

standing of such networks remains a major challenge in modern systems biology,

a field that aims to discover and iteratively refine mechanistic models of biological

processes. Biological knowledge is typically encoded in the structure and parameter-

ization of these models. The Gene Ontology project [1, 35] can help to incorporate

the known biological details of gene functions into such analysis. The challenge is

to reasonably approximate attributes in such models using experimental data that

is complex, noisy, and often incomplete.

For the purpose of acquiring biologically rich data sets, laser capture microdis-
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section (LCM) has proven a powerful tool to isolate pure cell populations from

complex heterogeneous tissue specimens [8, 30, 77]. In combination with microar-

ray technologies, which allow the simultaneous measurement of expression levels

for thousands of genes, LCM enables identification of critical gene products even if

expressed at low copy numbers.

Our work aims to facilitate efforts in systems biology by organizing data in

ways that can suppress noise and better reveal latent, biologically meaningful struc-

ture. Coloboma is a not uncommon congenital defect of human ocular development

resulting in large retinal holes which often significantly affect vision. The present

paper focuses on refinements in the analysis of a temporal series of microarray data

obtained from microdissected sites of retinal fissure closure in normal mouse em-

bryos. These data were previously analyzed [9] to identify a putative repressive

transcription factor, nlz2 (zinc finger protein 503), which, when its expression was

blocked in zebrafish embryos, led to incomplete optic fissure closure, a coloboma

model. The interaction of transcription factors, binding sites and gene networks

involving nlz2 and related genes, however, are poorly understood [9]. The present

paper is dedicated to develop a novel pipeline for the analysis of microarray gene

expression data that complements standard approaches and provides a list of can-

didate genes guiding further experimental analysis of genetic variations.

By developing and applying a novel clustering scheme, we have identified a 50

per cent larger gene cluster (in comparison to PCA and previous hierarchical cluster

analyses [9]), whose spatio-temporal gene expressions correlate with nlz2. According

to GoMiner, a computational high-throughput tool for biological interpretation of
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genomic, transcriptomic, and proteomic data, that identifies the biological processes,

functions and components of gene clusters [90, 89], this larger cluster still shows gene

enrichment for its specific functions in the context of Gene Ontology.

Next, using GoMiner, we sought to identify those gene clusters whose co-

expressions correlate with processes in eye development. First, we apply a novel

clustering scheme that builds on the intertwining of Laplacian Eigenmaps, a nonlin-

ear geometrical data transformation, with k-means and hierarchical clustering. To

validate the findings, we also use two standard clustering schemes, basic k-means

and principal component analysis combined with k-means and hierarchical clus-

tering. All three methods identify gene clusters enriched for functional GoMiner

categories related to eye development, but the proposed nonlinear scheme leads to

lower false discovery rates. Secondly, we have proposed a mechanism that allows

experts to introduce their input in form of additional, labeled information by means

of a potential on a data-dependent graph in [20] to improve the dimension reduc-

tion and clustering process. Distances between certain labeled genes are forced to

appear closer than normally while others are increased. In the present paper, we

aim to label genes that are highly connected and thus constitute hubs within the

regulatory network. Such genes appear to promote coherence within a gene cluster

and would thus be ideal candidates for labeling to obtain a more meaningful and

coherent clustering. There are many ways to extract genes of high connectivity,

and we use the weights that are generated by the Laplacian on the regulatory net-

work and alternatively weighted correlation networks as described in [49]. Identified

gene hubs are then labeled to incorporate regulatory network characteristics into
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the labeled Laplacian clustering. This novel clustering scheme based on nonlin-

ear dimension reduction and involving labeled data further improves the biological

specificity according to GoMiner analysis. Starting from experimental work based

on LCM and microarray technologies in organogenesis, we obtain a list of candidate

genes that could be significant in normal development of optic fissure closure and

could be useful in guiding analysis of genetic variations in humans with coloboma.

5.1.2 Materials and Methods

The Affymetrix MOE 430 2.0 microarray datasets analyzed to develop and test

our new method were for eight samples LCM microdissected from serial cryosections

of the retina at the site of final optic fissure closure in the mouse embryos at specific

embryonic stages 10.5 days through 12.5 days previously reported in [9]. The 8

time-points span the time just before and just after final fusion (optic fissure clo-

sure) and were expected to reveal sets of genes critical for the completion of optic

fissure closure in normal development. This previous report further investigated a

specific putative repressive transcription factor, nlz2 (or zinc finger protein 503),

that was discovered to be highly expressed before and during fissure closure and

then downregulated. Gene knockdown experiments in zebra fish of nlz2 resulted in

incomplete optic fissure closure (coloboma). Our current analysis explores possible

associated gene regulation patterns. Within the 8 different time-point microarrays

were 8316 genes consistently identified as expressed and with greater than 2-fold

variation in gene expression levels. For our clustering analysis, we chose the subset
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of n = 3416 genes whose expression levels varied between 4-fold and 26-fold over

the 2 days of embryonic development.

For analysis purposes, each gene of the microarray is considered as a vector

of its expression levels. This perspective yields a collection of D = 8 dimensional

vectors. Our proposed analysis relies on Laplacian Eigenmaps [3, 4], a geometrical

data transformation that provides a new representation of gene expressions still

covering essential geometrical behaviors. The nonlinear geometric representation

can be further steered by involving labels [20] that are either derived from weighted

correlation networks analysis [49] or from the Laplacian analysis. We intertwine

this new data representation with k-means [57], a widely used clustering scheme.

GoMiner [90, 89] is then used to identify genes within clusters that are associated

with particular biological processes or function.

Let us list the steps of our proposed scheme:

1. Expression vectors: Each gene’s expression over the 8 time points builds

a vector. They constitute a collection {x1, . . . , xn} of 8-dimensional vectors,

where n is the number of considered expressions

2. Nonlinear dimension reduction: Choose a target dimension d < D, and

obtain a new d-dimensional data representation {y1, . . . , yn} of the original

D-dimensional vectors {x1, . . . , xn}

3. k-means: Run k-means on {y1, . . . , yn} to obtain the final clustering

4. GoMiner: Feed the clusters into GoMiner to evaluate their biological rele-

vance
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Step 2 in the above scheme is specified in two different ways: First, we use a

nonlinear dimension reduction method without labeling (unsupervised):

2.A Laplacian Eigenmaps: Choose the number m of gene neighbors and a

target dimension d < D, then apply Laplacian Eigenmaps to obtain a new

d-dimensional data representation {y1, . . . , yn} of the original D-dimensional

vectors {x1, . . . , xn}

Alternatively, we may want to incorporate further input into the dimension reduction

process by using labeled data. We then identify step 2 with the following supervised

procedure:

2.B a) Identifying highly connected genes: Apply an R package for weighted

correlation network analysis (WGCNA) [49] to identify genes that are highly

connected within the gene regulatory network and that act as hubs. Alterna-

tively, use the Laplacian analysis to identify highly connected genes

2.B b) Schroedinger Eigenmaps: Gene hubs are labeled by means of a potential

term. Choose the number m of gene neighbors and a target dimension d < D.

The application of Laplacian Eigenmaps with potentials [20] yields a new

d-dimensional data representation {y1, . . . , yn} of the original D-dimensional

vectors {x1, . . . , xn}

In the following, we present the components of the above scheme in more

detail. For comparison we also applied PCA and k-means and therefore briefly

discuss these conventional methods too.
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Principal component analysis

PCA [61] is a statistical tool that linearly transforms the data into an orthog-

onal coordinate system whose axes correspond to the principal components in the

data, i.e., the first principal component accounts for as much variance in the data

as possible and, successively, further components capture the remaining variance.

Through an eigenanalysis, the principal components are determined as eigenvectors

of the dataset’s covariance matrix and the corresponding eigenvalues refer to the

variance that is captured within each eigenvector. After subtracting the mean of

the dataset, PCA is performed on vectors {x1, . . . , xn} by first diagonalizing the

covariance matrix cov(X) = E(XX>), where X = (x1 · · · xn) is the zero mean data

matrix. The eigenvectors p1, . . . , pD - the principal components ordered according to

the magnitude of their eigenvalues - provide the transformed data Y = W>X, where

W = (p1 . . . pD). We obtain the collection of d-dimensional vectors {y1, . . . , yn}

whose first entries represents the abundance of the primary principal. The second

entries are each datapoint’s projection along the second eigenvector and so forth.

Laplacian Eigenmaps

Laplacian Eigenmaps (LE) [3, 4] is a nonlinear geometric tool that transforms

data into a new representation in a nonlinear fashion. Given points {x1, . . . , xn} ⊂

RD, we assume that they are steered by d latent variables, and aim to find a new

data representation {y1, . . . , yn} ⊂ Rd. We briefly recall the three step procedure of

Laplacian Eigenmaps.
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Step 1: Adjacency graph, m-nearest neighbors We build a graph G, whose nodes

i and j are connected if xi is among the m-nearest neighbors of xj or vice versa.

The distance between data points is measured by the Euclidean metric. The graph

G represents the connectivity of the data vectors.

Step 2: Heat kernel as weights Next, we weight the edges of the graph and focus

on the diffusion weight matrix W given by

Wi,j =





e−
‖xi−xj‖

2

σ , i and j are connected,

0, otherwise.

(5.1)

The number of neighbors m controls the sparsity of W .

Step3: Solving an eigenvalue problem We denote a potential new data represen-

tation by y = (y1, . . . , yn)>, where each row is considered as a vector in Rd, and we

then consider the following minimization problem

min
y>Dy=I

1
2

∑

i,j

‖yi − yj‖2Wi,j = min
y>Dy=I

trace(y>Ly), (5.2)

where L = D −W and D is the diagonal matrix Di,i =
∑

jWi,j. The minimizer

of (5.2) is given by the d minimal eigenvalue solutions of Lx = λDx under the

constraint y>Dy = I, where I denotes the identity matrix, i.e., the minimizer y’s

columns are the d eigenvectors with respect to the smallest eigenvalues. If the graph

is connected, then 1 = (1, . . . , 1)> is the only eigenvector with eigenvalue 0, and we

exclude it. Instead of (5.2), we try to find the minimizer of

min
y>Dy=I,
y>D1=0

trace(y>Ly). (5.3)
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By applying the change of variables z = D1/2y, this yields

min
z>z=I,
z>1=0

trace(z>Lz), (5.4)

where L = D−1/2LD−1/2. The minimizer z is given by the d eigenvectors with small-

est nonzero eigenvalue, and we obtain the d-dimensional representation {y1, . . . , yn}

from y = D−1/2z.

Identifying highly connected genes

Weighted gene co-expression network analysis is a systems biology tool that

allows to identify highly connected genes within a regulatory network. An R package

implementation WGCNA is available with an accompanying tutorial [49]. Alterna-

tively, the matrix D in (5.2) is a measure of the connectivity within the network

and can be used to identify highly connected genes within the Laplacian framework

directly.

Schroedinger Eigenmaps

Based on the Laplacian matrix L in (5.3), a flexible potential, that can capture

additional labels, has been introduced in [20]. The matrix L is replaced with a

Schroedinger type matrix E = L + V , where V is a potential matrix that encodes

labels. One then aims to minimize

min
y>Dy=I,
y>D1=0

trace(y>(L+ V )y). (5.5)

The result is a new Schroedinger Eigenmaps method that allows for input in an

otherwise fully automated dimension reduction process [20]. Here, labels are utilized
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to emphasize “important” genes, and we use the connectivity of genes as a measure

of their importance in the description of the regulatory network.

Standard cluster analysis

For hierarchical clustering, we refer to [36], and we also apply a shape similarity-

based clustering as introduced in [37]. k-means is a method of cluster analysis which

aims to partition n observations into k clusters {c1, . . . , ck}, where k has to be chosen

a-priori [57], i.e., one aims at minimizing

arg min
c1,...,ck

( k∑

j=1

∑

yi∈cj

‖yi − Ecj‖2
)
,

where Ecj is the mean of cluster cj. The basic k-means algorithm requires the target

number of clusters to be specified as a parameter.

The k-means algorithm begins with a data set, a target number of clusters

k, and a set of s1, . . . , sk initial cluster centroids. It then iteratively assigns points

to clusters by centroid proximity, and then adjusts centroids to reflect changes in

cluster membership. The algorithm terminates either after a specified number of

iterations, or once the cluster centroids/membership no longer change. Although

optimal results cannot be guaranteed, the algorithm is quite fast, and many runs

can be efficiently computed, with the best clustering taken as an overall result.

GoMiner

GoMiner provides a quantitative and statistical analysis-tool for biological in-

terpretation of genomic, transcriptomic, and proteomic data, commonly derived
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from gene expression microarray experiments. It classifies genes into biologically

coherent categories and then uses the Gene Ontology project to identify the biolog-

ical processes, functions and components of genes within these categories [90, 89].

A one-sided Fisher’s p-value is used to determine the significance and biological

enrichment levels within a category.

Clustering with Genesis

Clustered image maps (CIMs) were first introduced in [83] and are produced

here with the Genesis program [76]. We select the Euclidean distance metric and

average linkage for hierarchal clustering. To facilitate visualization, a recently-added

feature of GoMiner has been implemented that removes large generic categories from

all CIMs.

Silhouette coefficient

The silhouette coefficient is a measure for the coherence of clusters. If we take

a clustering C to be a mapping from a data set X = {x1, . . . , xn} to the integers

1, 2, . . . , k (where k is the total number of clusters), we can define the silhouette

coefficient sil(x) for each point x in X to be

sil(x) =
B(x)− A(x)

max(A(x), B(x))
,

where A(x) is the average distance between x and other points in its cluster, and

B(x) is the average distance between x and the points in the nearest neighboring

cluster, cf. [68]. The silhouette coefficient sil(i) for a cluster i is the average of the
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coefficients for its constituent points. We similarly define the silhouette coefficient sil

for an entire clustering to the average silhouette coefficient over all data set points.

A clustering with a silhouette coefficient closer to 1 will contain more cohesive and

well-separated clusters.

For our experiments, we use the squared Euclidean distance for the computa-

tions indicated above, as well as for the data clustering algorithms.

Description of the approach

Microarray data from LCM isolated cells in a mouse model of coloboma as

described in the present Section 5.1.2 are analyzed by using standard cluster analysis

and a novel gene clustering scheme. We derive a coherent clustering and make use

of GoMiner to identify those genes identified in public databases as being associated

with eye development or function as a measure of the quality of the other members

in the cluster. We used GoMiner to identify the degree of association of clusters

obtained by all methods with early stage retinal development, and, in particular,

with the closure of the optic fissure, see Figures 1, 2, 3, 4, 5.

For k-means, we set the target number of clusters to be 24, based on previous

work with the current data set [9] that yielded biologically meaningful (but smaller

and fewer) cluster results. The maximal silhouette coefficient sil specifies the best

k-means clustering over 100 repeated runs, starting in each case from different ran-

domly selected initial centroids. The maximum was stable over different 100 run

sets, suggesting that an at least near optimal clustering was being obtained. Since
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the parameter space is too big for an exhaustive search in the dimension reduction

process, we fix σ = 1/8 in (5.1) and assess remaining parameters (number of near-

est neighbors and target dimension) over m = 5, . . . , 10, 12, 15, 20, 25, 50, 100 and

d = 1, . . . , 10, 12, 16. The idea is that parameter combinations that yield better

cluster structure in the mapped data {y1, . . . , yn} might be better tuned to resolve

possible intrinsic structure in the original data {x1 . . . , xn}. Silhouette coefficients

suggest values m = 10 and d = 2, which additionally provide excellent GoMiner

gene identifications.

5.1.3 Results

We aim to increase our understanding of the gene network underlying the

closure of the optic fissure during vertebrate eye development:

Enlarged cluster containing nlz2:

We have identified a 50 per cent larger gene cluster than with hierarchical

clustering in [9] whose spatio-temporal gene expressions significantly correlate with

nlz2, a gene which when previously inhibited in zebrafish induced coloboma. The

latter cluster is associated with 210 Affymetrix probes corresponding to 169 genes,

nlz2 was among them. See Figures 6 and 7 for gene expression profiles and its set

of enriched functional categories. GoMiner assigns the functional category of ‘gene

silencing’, indicating the repressive influence of nlz2 and co-varying genes. Previous

biological studies have shown nlz2 gene product to repress gene transcription of a
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number of genes regulated hindbrain development possibly as part of a transcription

factor complex consistent with its H2N2 zinc finger domain and its binding site for

histone deacetylase. Consistent with this hypothesis, we also identify an additional

cluster that varies inversely with the primary ‘nlz2 cluster’ gene silencing, sugges-

tive of the previously documented role of nlz2 in suppression of gene transcription,

cf. Figure 8.

One complementary cluster:

We have found a large cluster whose shape is distinct from nlz2 by applying the

similarity-based shape clustering in [37]. GoMiner assigns a number of significantly

associated functions to this large cluster including retina morphogenesis (verte-

brate eye), generation of neurons, cellular morphogenesis during differentiation,

photoreceptor differentiation, cell motility, neuron differentiation, cell projection

organization, and biogenesis. The highlighted functions are specifically associated

with CHX10, a gene in this cluster that has previously been identified in retinal

development, see, for instance, [64, 74].

Collection of enriched clusters:

We also apply k-means on the original data set and on PCA and LE reduced

data. The selected ‘best’ k-means result applied directly to the original data has

an overall silhouette coefficient of 0.38. To evaluate PCA+k-means, for each pos-

sible number of retained principal components, the mapped data is clustered, and

overall silhouette scores are obtained. The best results refer to the mapping based
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on principal components capturing about 85% of the variance, with the best overall

silhouette score being 0.698. The silhouette scores in the mapped data are substan-

tially higher than those obtained following clustering of the original data, illustrating

the fact that Laplacian Eigenmaps enhance cluster structure, see Table 1 for more

details.

We find that PCA+k-means, basic k-means, and LE+k-means yield several

significantly enriched gene clusters (out of a total of 24) associated with developmen-

tal processes, cf. Table 2. Cluster 22 of the Laplacian Eigenmaps-based approach

reveals a cluster significantly enriched (with a false discovery rate (FDR) of less

than 0.05) for genes specifically implicated in eye development - which is the focus

of the experimental work underlying the data set considered in this study. These

functional categories (in GoMiner terminology) are

(i) GO:0042462 eye photoreceptor cell development,

(ii) GO:0001754 eye photoreceptor cell differentiation,

(iii) GO:0042461 photoreceptor cell development.

When slightly relaxing the FDR up to < 0.15, this cluster 22 shows gene enrichment

for further eye specific developmental functions:

(iv) GO:0048592 eye morphogenesis,

(v) GO:0001654 eye development,

(vi) GO:0046530 photoreceptor cell differentiation,
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see also Figures 1 and 4. These categories are neither hit by k-means nor PCA+k-

means clustering when restricting the FDR to < 0.05. By relaxing the FDR, how-

ever, both k-means and PCA+k-means clustering show gene enrichment for eye

specific functions. This verifies that the eye specific functions in LE+k-means clus-

ter 22 are real and have not been picked up by chance. To support the latter claim,

we compare the enriched categories in the LE+k-means cluster 22 with the clusters

of the other two clustering methods with relaxed FDR. It turns out that specific eye

development functions are present in all three clustering methods, but our proposed

Laplacian-based scheme leads to lower false discovery rates, see also Table 2. Poten-

tial nonlinear structures in the data could be an explanation for this observation, see

Figure 9. A nonlinear dimension reduction method would clearly be better suited

to fit nonlinear structures than linear methods.

CIMs in Figures 3 a)-b) indicate which clusters across the three methods share

common GoMiner categories. It enables us to identify categories that are more

specific to one method than to the others. Based on Table 1 the fraction of genes,

that are associated to biological functions, are computable for each cluster, method,

and false discovery rate.

Note on LE+k-means:

We note that relatively unusual expression patterns are often mapped to dis-

tinct, outlying clusters by the Laplacian Eigenmaps approach. For example, the

three expression patterns indicated in Figure 8 form a distinct cluster under the
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Laplacian Eigenmaps data representation. They are not as well separated in the

original and PCA-mapped data, and are consequently misplaced in inappropriate

clusters. This could be a technical explanation for greater biological specificity of

Laplacian Eigenmaps clustering.

Schroedinger Eigenmaps:

We first label a collection of transcription factors that are known to be anno-

tated to eye development. Enriched GO categories, however, appear generic when

applying Schroedinger Eigenmaps with such labels, cf. Figure 10. To obtain more

meaningful labels, that are directly extracted from the data rather than from the

literature, we identify a set of highly connected genes through the weighted cor-

relation analysis described in [49], see Figures 11 and 12. These “hub genes” are

then labeled by means of the potential to steer Schroedinger Eigenmaps utilizing

the gene network topology. This labeling seems to further improve the biological

specificity, cf. Figure 4. Alternatively, the matrix D in (5.2) is a natural measure

of the connectivity within the Laplacian framework. According to D, we use highly

connected genes as labels within the LE cluster 22, cf. Figure 13, providing the high-

est biological specificity, cf. Figure 5. Enriched GO categories that are derived from

supervised and unsupervised dimension reduction are shown in Table 3. The super-

vised procedure Schroedinger Eigenmaps identifies more categories specific to early

retinal development and the optic fissure closure than the unsupervised approach.
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5.1.4 Discussion

Obtaining a clearer understanding of the gene regulatory network underlying

optic fissure closure during eye development will be a long process involving genetic

analysis of humans with coloboma and studies of eye development in animal models.

Our present analysis and results focus on expanding a list of candidate genes that

could be critical for normal fissure closure and in coloboma patients may contain

mutations. Compared with conventional clustering algorithms that we tested, our

new method is able to identify larger clusters associated either with the nlz2 gene

expression or with a distinctly complementary pattern enriched with associations

to eye development gene ontologies. It also uniquely identifies the ‘nlz2-repressed’

pattern as a distinct cluster, cf. Figure 2. The large temporally covarying gene

cluster in Figure 7 is identified by GoMiner as being significantly associated with

gene silencing, suggestive of a gene regulatory network that represses alternative

fates until optic fissure closure is successfully completed (day 11.5 in the mouse).

The pattern of genes in Figure 2 could represent such genes that are transiently

repressed only when the nlz2 cluster is high. Using temporal pattern-based similarity

clustering [37] allows identification of other distinct clusters (i.e., not containing

nlz2) in which GoMiner identifies significant associations with specific developmental

functions in databases.

Distinct biological specificity for our data set is obtained when labeling highly

connected genes and encoding these labels in the potential term. The GO categories

eye morphogenesis, retina morphogenesis in camera type eye, and camera
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type eye morphogenes, for instance, reflect the optic fissure closure and are

identified by Schroedinger Eigenmaps suggesting that nonlinear dimension reduction

with labeled data can improve the biological specificity in gene cluster analysis,

cf. Figure 5 and Table 3.

Clearly, our new mathematical approach to identify new components of gene

regulatory networks controlling development is preliminary and would need further

validation to claim its usefulness in more generality. We anticipate improvements

in our analysis methods based on nonlinear dimension reduction with connectivity

analysis and labeled data.

Microarray data are commonly used for global searches for gene expression

changes that might be associated with a perturbation of a cell state or in pathology.

In organ development, temporal and spatial patterns accessible through microdis-

section are associated with reproducible changes in gene expression of even larger

numbers of genes. More efficient analysis of microarray data from such microdis-

sected samples could provide improved understanding of cell fate and organogenesis

as well as elaboration of gene expression covariance networks. Our nonlinear anal-

ysis scheme based on Laplacian Eigenmaps and labeling highly connected genes

through a potential appears to offer advantages over standard clustering algorithms

in the sense of greater biological specificity and sensitivity. Our results motivate

further analysis of nonlinear dimension reduction with labeling within other mi-

croarray data sets from LCM dissected tissue or other phenotypically specific cell

samples to potentially validate its biological specificity in more generality. Together

with LCM-focused gene expression microarray measurements, our proposed analysis
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could be part of an iterative process to more completely identify additional elements

in gene regulatory networks underlying mammalian organogenesis.

5.1.5 Figures

Figure 1 - CIM cluster 22:

CIM for LE+k-means cluster 22 with functional categories related to eye de-

velopment, false discovery rate (FDR)< 0.05. The cluster is enriched for eye pho-

toreceptor cell development and for a eye photoreceptor cell differentiation. We

hence see GO categories that are closely related to eye development although the

FDR is stringently chosen. 24 genes are mapped to 11 GO functions. (Red: genes

are mapped to GO categories, Yellow: no association)

Figure 2 - CIM cluster 22 with relaxed FDR:
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portion CIM for LE+k-means cluster 22 with functional categories related to

eye development (the entire CIM contains 74 GO categories). The input cluster

for the present CIM is the same as for Figure 1. By choosing the less stringent

FDR< 0.15, more GO categories are statistically enriched, and 36 genes (only 24 in

Figure 1) are mapped to these GO categories. Beside the eye related categories in

Figure 1, there are additionally eye morphogenesis, eye development, and sensory

organ development.
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Figure 3 - CIMs across methods:

Enriched GoMiner categories that are shared among clustering methods. Each

of the 3 different clustering methods (LEIGS KM 24, PCA KM 24, KM 24) produced

24 clusters. We picked 12 among the 72 clusters that seemed to show significant

enrichment by means of GO categories. (Yellow means no association. The darker

red, the stronger the association between cluster and category) Cluster 22 from

Laplacian Eigenmaps+k-means has shown eye related GO categories in Figures 1

and 2 with very stringent FDR. Figures 3 a)-b) verify that these categories have not

been picked by chance and that the proposed Laplacian-based scheme leads to lower

false discovery rates than the other methods and hence appears to provide greater

biological specificity and sensitivity.

(a) GO categories that are shared by at least three clusters, FDR< 0.10. First,

cluster 8 of Laplacian Eigenmaps+k-means appears to be closely related to
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cluster 14 derived from PCA+k-means. Cluster 22 from Laplacian Eigenmaps+k-

means shares few biological functions with cluster 7 of k-means. However, GO

categories that are related to eye development are not shared by any other

method at FDR< 0.10. Recall that cluster 22 from Laplacian Eigenmaps+k-

means has shown enrichment for these categories already at FDR< 0.05 in

Figure 1.

(b) The portion CIM with FDR< 0.20 that is associated to additional eye devel-

opment categories that weren’t present in Figure 3a). They are shared by the

Laplacian+k-means cluster 22, by k-means cluster 16, and by Laplacian+k-

means cluster 8. The entire CIM contains too many GO categories to be listed

here.

Figure 4 - CIM Schroedinger Eigenmaps II:

Seven highly connected genes from Figures 11 and 12 were labeled in Schroedinger

Eigenmaps. After clustering, all seven labeled genes are contained in the same clus-

ter with 145 other genes. The cluster is enriched for categories (eye morphogenesis,

eye development) that are more specific to eye development than the results with-

out labeling suggesting that data-dependent gene labeling can increase the biological
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specificity.

Figure 5 - CIM Schroedinger Eigenmaps III:

Five highly connected genes from Figure 13 were labeled in Schroedinger Eigen-

maps. After clustering, all five genes are contained in the same cluster. The GO

categories for this cluster match the optic fissure closure and thus provide distinct

biological specificity (eye photoreceptor cell development, eye photoreceptor cell dif-

ferentiation, camera type eye morphogenesis, retina morphogenesis in camera type

eye, eye morphogenesis, eye development, sensory organ development). Schroedinger

Eigenmaps using labels derived from the Laplacian weight matrix D provide better

specificity than using Laplacian Eigenmaps without any labels.
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Figure 6 - nlz2 cluster profile:

Profile of cluster that contains nlz2. Gene expression levels are plotted vs. 8

time-points, black circles indicate nlz2.
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Figure 7 - CIM containing nlz2:

Clustered Image Map (produced by GoMiner) showing enriched functional

categories for the cluster that contains nlz2 and 168 other genes. More genes in this

cluster have been associated to the 5 above GO categories (gene silencing is among

them) than one would expect by chance. The 7 genes (DNMT1,...,TOPBP1) above

are mapped to these GO categories within the GoMiner database. Red indicates

that genes were mapped to GO categories. Yellow means no annotation. Due to gene

expression co-variation within the cluster, other genes in the cluster could possibly

related to the above GO categories too. Since gene silencing is associated to this

cluster, one may speculate that nlz2 and co-varying genes have repressive function

and that there is a cluster that shows the reverse expression profile, see Figure 8.
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Figure 8 - outliers:

Outliers that LE+k-means captures into a separate cluster, the associated

Affymetrix probes are 1427262 at, 1427263 at, 1436936 s at. All three probes are

associated to XIST, a gene that is transcribed and spliced but does not appear to

encode a protein. XIST inactivation is known to be an early developmental process

in mammalian females.
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Figure 9 - The 8-dimensional data are projected onto a 3-dimensional

subspace:

The 3-dimensional subspace is spanned by their 1st, 3rd, and 8th coordinates.

If the data would lie on a linear subspace in R8, then the projected data must

show a linear pattern. However, the actual projection of our data does not show

a linear pattern but rather two cones next to each other. A nonlinear approach

like Laplacian Eigenmaps could be useful to recover nonlinear structure of the data

manifold.
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Figure 10 - CIM Schroedinger Eigenmaps I:

We have labeled transcription factors (CHX10, OTX2, PAX6) that are known

from the literature to be associated to development. We intend to derive a cluster

whose GO categories are specific to eye development when starting with labeled

genes. Schroedinger Eigenmaps using these labels is applied and the new data

representation is then clustered. The three labeled TF are contained in the same

cluster with 154 other genes. GoMiner enrichment analysis leads to relatively generic

categories that one would expect from the choice of the labeled TF. However, specific

eye development categories were not found. This observation suggests that gene

labeling based on literature search leads to relatively poor GoMiner enrichments.
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Figure 11 - plot of connectivity scores in increasing order for WGCNA

weights:

To derive gene labels directly from the measured Affymetrix data rather than

from the literature, we aim to identify co-varying genes with high connectivity in the

regulatory network. The plot shows the connectivity of Affymetrix probes within

a cluster enriched for eye development computed by WGCNA. Rank index refers

to Affymetrix probes. The associated most highly connected genes according to

WGCNA are Cdh4, Dll1, Tox, Onecut2, Dcc, Epha5, Cadps.

87



Figure 12 - connectivity network for WGCNA weights:

Portion of the thresholded weighted correlation network derived from WGCNA.

In the entire connectivity network, each of the genes to be labeled (Cdh4, Dll1, Tox,

Onecut2, Dcc, Epha5, Cadps) would have more than 16 connections, see also Figure

11.
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Figure 13 - plot of connectivity scores in increasing order for LE

weights, LE cluster 22:

We aim to further improve the biological specificity of cluster 22 derived from

Laplacian Eigenmaps + k-means. To identify co-varying genes with high connec-

tivity in the regulatory network of cluster 22, we measure connectivity by means

of the weight matrix D in (5.2). The connectivity of Affymetrix probes within

LE+KM cluster 22 are shown. The most highly connected genes in cluster 22 are

Etv3, Zfp386, Kdm4c, Eea1, Fyttd1, which can be used as labels in Schroedinger

Eigenmaps.
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5.1.6 Tables

Table 5.1 comparison for unsupervised methods: Silhouette coefficients and number

of genes for each cluster and unsupervised clustering method (no labels). Laplacian

Eigenmaps+k-means leads to higher silhouette coefficients.

k-means PCA+k-means LE+k-means

cluster sil # genes sil # genes sil # genes

1 0.0200 65 0.7329 126 0.6535 103

2 0.3067 146 0.6221 60 0.7049 125

3 0.4078 180 0.7002 168 0.6862 174

4 0.4068 234 0.6840 198 0.6848 154

5 0.3401 255 0.7423 157 0.7831 97

6 0.2960 252 0.7033 130 0.7949 389

7 0.3442 90 0.6795 126 0.7369 120

8 0.6509 9 0.6800 65 0.6953 270

9 0.3900 254 0.6393 190 0.7800 91

10 0.2162 34 0.7130 187 0.7046 79

11 0.3056 112 0.6517 182 0.7606 141

12 0.3531 165 0.7162 155 0.7487 122

13 0.4636 182 0.6925 117 0.9889 3

14 0.4267 167 0.7422 205 0.7118 125

15 0.6529 114 0.6968 184 0.5997 85

16 0.1593 86 0.5266 9 0.7214 236

17 0.5488 13 0.6792 84 0.6839 83

18 0.4323 253 0.6956 211 0.7380 135

19 0.1749 20 0.7151 118 0.6466 72

20 0.3076 133 0.6926 170 0.7243 121

21 0.4314 174 0.7041 115 0.7461 199

22 0.4394 130 0.7342 116 0.7442 275

23 0.4538 210 0.7252 192 0.6849 115

24 0.4366 138 0.6792 151 0.8534 102
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Table 5.2 The number of enriched Go-categories are counted over all 24 clusters at

a false discovery rate of 0.05 which is the default configuration of GoMiner. k-means

and PCA+k-means do not show any eye specific enrichement in any of the clusters.

Only LE+k-means provides one cluster that is enriched for 3 categories specific to

eye development. These categories would have even been picked at an FDR of 0.01

suggesting strong statistical support for the LE+k-means performance. Potential

nonlinear structures in the data could be an explanation for this observation, see

Figure 13.

k-means PCA+k-means LE+k-means

# enriched Go-categories 55 17 27

# enriched Go-categories specific to eye development 0 0 3
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Table 5.3 comparison between supervised and unsupervised methods: GO cat-

egories related to the optic fissure closure that are associated to clusters derived

from unsupervised (no data labels) and supervised (labeled data) methods. Using

labels that are computed directly from the measured data appears to provide more

biological meaningful associations than unsupervised methods.

unsupervised methods Schroedinger Eigenmaps + WGCNA / D-labels

eye morphogenesis

eye development

eye photoreceptor cell development

eye photoreceptor cell differentiation

photoreceptor cell development

embryonic morphogenesis

morphogenesis of a branching structure

sensory organ development

camera type eye morphogenesis

retina morphogenesis in camera type eye

retinal bipolar neuron differentiation
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5.2 Predicting expression-related features of chromosomal domain

organization with network-structured analysis of gene expression

and chromosomal location

5.2.1 Introduction

A growing range of experimental results indicate that the cell nucleus is highly

organized on many levels [55]. Chromosomes, while not set in fixed locations, do

appear to form relatively stable associations within particular territories. Smaller,

gene rich chromosomes (chromosomes 16, 17, 19, 20, 21, and 22) often aggregate

toward the interior of the nucleus, while chromosomes with reduced gene density, as

well as gene-free telomeric regions, tend to be distributed around the nuclear periph-

ery [55]. Individual chromosomes are themselves variably complexed and compacted

through hierarchically structured interactions with histones and other DNA-binding

proteins. The resulting chromatin landscapes shape the relative accessibility of

genes, and thus, many facets of their expression. An interesting prospect is that

gene expression and chromosomal organization may be substantially related, with

relatively stable patterns of inter-chromosomal interactions emerging in support of

coordinated expression programs [46, 28, 62]. This sort of organization could al-

low transcription factor networks to be locally structured and more dynamically

responsive. For example, a factor acting on genes dispersed over several chromo-

somes could function more efficiently if the relevant regions are juxtaposed, allowing

smaller concentrations to quickly diffuse over a restricted nuclear neighborhood.
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This paper presents a flexible approach for detecting features of chromosomal

domain organization that may be related to coordinated gene expression. The essen-

tial idea is to identify chromosomal neighborhoods over which genes are relatively

co-expressed. These locally correlated clusters (LCCs) are then associated, yield-

ing a candidate, expression-related inter-chromosomal interaction network. For the

key step of identifying LCCs, we apply a non-linear data representation approach -

Laplacian Eigenmaps (LE) - to organize genes with respect to a combined measure

of co-expression and physical proximity along a chromosome.

Previous studies have demonstrated co-expression domains at various genomic

scales, with neighboring genes being more likely to exhibit co-expression than more

distant ones, even after accounting for clusters of duplicated genes [85, 16, 53]. Ad-

ditional tools have been developed to partition and visualize microarray data with

respect to chromosomal location [87]. While these efforts motivate our work with

valuable insights, their approach and emphasis is somewhat different. In particular,

the preceding studies directly analyze chromosomal location-structured correlation

maps to identify contiguous co-expression domains, and more global patterns of

co-expression at different genomic scales. Our aim is to present a somewhat more

specific framework for detecting the most prominent locally correlated domains that

are additionally correlated across chromosomes. The selection approach for these

co-expression domains is potentially more sensitive, in that the LE-based data or-

ganization allows detection of locally correlated clusters that need not include every

gene along a chromosomal segment. The overall output is a network of potential

expression-related inter-chromosomal interactions that is amenable to detailed anal-

94



ysis. This expression-based chromosomal interaction network view is motivated by

recent modeling studies, which integrate expression data with matching data on

physical interactions between chromosomes [62].

In the following sections, we describe the Laplacian Eigenmaps technique, as

well as the general approach used to identify and relate LCCs. We then present some

results with a gene expression data set derived using 5 state-of-the-art microarray

platforms over the widely-studied NCI-60 cancer cell lines. In particular, we show

that numerous LCCs can be identified and inter-related. The resulting candidate

inter-chromosomal interaction network features a prominent hub cluster, with two

known transcription factors. We describe two levels of network validation, the first

statistical, and the second with respect to experimentally measured chromosomal

interactions in a published study. A particular strength of the current study is the

breadth and comprehensiveness of the NCI-60 derived data set, which is among the

most detailed available for a system of comparable biological complexity. We con-

clude by discussing some ongoing work to further evaluate and extend the presented

methods, taking advantage of the range and structure of the available profiling data.

5.2.2 Data Sets

Gene transcript expression was derived for the NCI-60 cancer cell lines us-

ing five leading microarray platforms.: the Affymetrix (Affymetrix Inc., Sunnyvale,

CA) Human Genome U95 Set (HG-U95) (GEO accession number GSE5949) [71];

the Human Genome U133 (HG-U133) (GEO accession number GSE5720) [71]; the
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Human Genome U133 Plus 2.0 Arrays (HG-U133 Plus 2.0) (GEO accession num-

ber GSE32474) [65]; the GeneChip Human Exon 1.0 ST array (GH Exon 1.0 ST)

(GEO accession number GSE29682) [65] and the Agilent (Agilent Technologies,

Inc., Santa Clara, CA) Whole Human Genome Oligo Microarray (WHG), (GEO

accession number GSE29288) [56]. For these gene expression data sets (accessible

at http://discover.nci.nih.gov/cellminer/) all probes were put through rig-

orous quality control. The first criterion was for each accepted probe expression

profile (across the 60 cell lines) to have an intensity range r satisfying log2 r > 1.2.

The second criterion was to use probes with a minimum average correlation to all

related probes of 0.60 when possible, or of 0.30 (p < 0.02) if not. The probe expres-

sion profiles that passed these steps were then standardized and averaged to obtain

gene-specific expression profiles integrating data derived from the various platforms.

5.2.3 Laplacian Eigenmaps for Nonlinear Data Organization

We apply a nonlinear data organization technique - Laplacian Eigenmaps (LE)

- to organize genes with respect to a combined measure of co-expression and physical

proximity along a chromosome. Each gene can be represented by a set of measure-

ments - expression values across cell lines, as well as a chromosomal position. The

measurements can be seen as points in a Euclidean space, and we can reasonably

suppose that these points - particularly the expression values - are somewhat con-

strained by the highly structured networks of underlying molecular interactions. In

more mathematical terms, we assume that our data set consists of points {x1, ..., xN}
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drawn from a d-dimensional manifold in RD (d << D), or a distribution with sup-

port concentrated on a d-dimensional manifold. We obtain a manifold structure

preserving low dimensional representation {y1, ..., yN} ⊂ Rd in three steps:

1. Construct Data Adjacency Matrix W : for k ∈ N, put an edge between ele-

ments i and j if xi is among the k nearest neighbors of xj or vice versa. Weight

connected edges using Wij = e
‖xi−xj‖

2

σ , σ > 0.

2. Construct Laplacian Matrix L: Set Dii =
∑

jWij , and let L = D −W .

3. Compute Eigenmaps: Solve Lx = λDx. Let f0, f1, ..., fd be the eigenvec-

tors corresponding to the first d + 1 eigenvalues 0 = λ0 ≤ λ1 ≤ ... ≤ λd.

Discard f0 and embed in d-dimensional space using the map xi 7→ yi =

(f1(i), f2(i), ..., fd(i)).

The overall approach is motivated by the fact that the graph-based Laplacian matrix

L can be seen as a discrete analogue of the Laplace-Beltrami operator on the under-

lying manifold. The eigenmaps of the latter operator provide an optimal embedding

of the manifold into a space of reduced, intrinsic dimension. Since the graph-based

Laplacian converges to the manifold-based Laplace-Beltrami operator, its associated

data mappings progressively inherit the corresponding manifold recovery guarantees

[4, 5].

We can also understand LE in more concrete terms. Let the N ×d matrix y =

(y1, ..., yN)T denote the low-dimensional representation of our data set. The above
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eigenvalue problem Lx = λDx can be shown to solve the following minimization:

arg min
(yTDy=I)

trace(yTLy) = arg min
(yTDy=I)

1

2

∑

i,j

‖yi − yj‖2Wi,j. (5.6)

Note that the first term on the right forces neighboring points in the original data

space (with large Wij) to be mapped next to one another. As such, LE acts to

organize data with respect to local features, which allows natural cluster structure

to be better revealed. LE can, in fact, be related to spectral clustering techniques

which approximate optimal graph partitionings [4]. LE can additionally be shown

to be equivalent to kernel PCA using a kernel matrix associated with the commute

times of diffusion on the underlying data graph [33]. These commute times are

compressed in regions of natural cluster structure, where many paths connect given

pairs of points. By preserving commute time distances, the LE-based representa-

tion thus preserves cluster structure and reflects aggregate connectivity relationships

between data set elements, as captured by the matrix W . The mathematical inte-

gration of information over many paths relating network-structured data elements

also tends to suppress noise-related features in the data. Taken together, the above

attributes often allow LE to enhance established learning approaches by providing

a more meaningful representation of the data. In a gene expression study of em-

bryonic eye development, we have shown that LE can be combined with standard

clustering techniques to identify sets of genes with significantly increased functional

specificity [25, 26, 88]. Other studies have shown that LE can be applied to improve

classification and visualization of gene expression microarray data [2, 52]
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5.2.4 Fusion of Gene Expression and Chromosomal Location Data

Information on gene expression and chromosomal location was combined within

the framework of LE. In particular, we applied the following steps for each chromo-

some.

• Construct a symmetric, k-nearest-neighbor matrix Wloc relating genes with

respect to base pair distances

(Wloc(ij) 6= 0 if gene i is among the k nearest neighbors of gene j or vice

versa).

– Set k to be the smallest value yielding a connected data graph.

– Weight distances using a Gaussian kernel, i.e., Wloc(i, j) = e−
(bpdist(i,j))2

σ ,

where bpdist(i, j) > 0 denotes the separation in base pairs between genes

i and j, and σ is set to give genes separated by 2Mbp a weight of exp(−1
2
).

• Construct a symmetric expression similarity matrix Wexp, with values specified

according to the ‘mask’ implied by Wloc:

– set Wexp(i, j) = 1, if Wloc(i, j) 6= 0 and

AbsoluteCorrelation(i, j) > 0.3; (for the study data set, an absolute cor-

relation of 0.3 was estimated to be associated with a p-value just un-

der 0.05, making all selected correlations significant with respect to this

threshold).

– set Wexp(i, j) = 0, otherwise.
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• Perform Laplacian Eigenmaps using W = Wloc + Wexp, followed by k-means

clustering of the mapped data.

The idea is to perform LE with respect to a symmetric (Wij = Wji) ‘fusion ker-

nel’ W , which strongly weights genes that are both co-located and co-expressed.

Symmetry, together with the nonnegative entries of W , assure that the constructed

Laplacian matrix L is positive semidefinite and diagonalizable, yielding well-defined

eigenmaps as described in the previous section [4]. The location kernel (Wloc) band-

width σ is set to impose a ‘soft’ local neighborhood threshold around 2Mbp. The

target dimensionality for the LE mapping and the number of clusters selected for

k-means clustering were both set to the same value, based on the ‘spectral gap’

associated with the Laplacian matrix derived from W . K-means clustering was per-

formed 100 times, with the best clustering selected based on average silhouette score

(a measure of intra-cluster cohesion and inter-cluster separation). The use of the

spectral gap for selecting the target dimensionality and cluster count is motivated

by a natural connection between LE and spectral clustering methods that also op-

erate from the graph Laplacian L. Basic results from spectral graph theory show

that the eigenspace of eigenvalue 0 for L is spanned by indicator vectors 1IC1 , ...1ICk

corresponding to the connected components C1, ...Ck of the data graph [15, 82]. In

the scheme presented above, the LE nearest neighbor parameter is selected to yield

a connected data graph, but any intrinsic cluster structure in the data will produce

strongly connected subcomponents that are only weakly connected to one another.

In this setting, the eigenvectors selected with respect to the spectral gap (e.g., with
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eigenvalues closer to zero) correspond to approximate indicator vectors for these

natural clusters in the data graph.

The presented approach for fusing gene expression and chromosomal location

data is one of several possibilities in a general LE/kernel-based framework. Some

alternatives are indicated in the Discussion section. For this initial study, we made

specific choices to accentuate, through the LE mapping, even modestly correlated

clusters that are well localized. The fusion kernel is thus structured with respect to

the location data graph relating genes and gene neighborhoods along a chromosome.

The LE nearest neighbor parameter is set to assure a connected location data graph,

so that all genes are related, while the LE kernel bandwidth parameter is set to

extract reasonable local neighborhoods in the data mapping. The expression kernel

is binary-valued, with pairwise expression values set to 1 whenever a genes are

within a neighborhood and their correlation exceeds a statistical significance-based

threshold. The idea here is to integrate expression-based relationships between

genes, as might be derived from a significance-thresholded correlation network. An

alternative is to apply exact absolute correlation values in the expression kernel,

but we found that this often causes relatively separated genes that are very highly

correlated to be strongly weighted in the fusion kernel (and thus mapped next to one

another). More sophisticated parameter tuning could perhaps address this issue, but

the indicated approach was applied for this study to place the focus on identifying

and relating a set of well-defined LCCs.

We finally note that the use of the Gaussian kernel for weighting location

distances, as well as the additive combination of location and expression kernels,

101



is motivated by the theory supporting Laplacian Eigenmaps. The essential idea is

that the Laplace-Beltrami operator is intimately related to heat diffusion on man-

ifolds, with diffusion processes integrating and reflecting local manifold geometry.

In this sense, the Laplace-Beltrami operator is a fundamental geometric object, and

its eigenfunctions naturally support data transformations that preserve manifold ge-

ometry [5]. The action of the Laplace-Beltrami operator on a differentiable function

defined on a manifold can be expressed in terms of the heat kernel, which in the

appropriate local coordinate system is approximately the Gaussian. The Gaussian

kernel thus arises naturally in the discrete approximation to the Laplace-Beltrami

operator applied in Laplacian Eigenmaps [4, 67]. Additive combination of kernels

fits well within this mathematical framework, while alternatives such as point-wise

multiplication of kernels are somewhat more removed. With the latter, we have

nonzero kernel weights of the form e(−‖·‖2loc−‖·‖
2
exp), where ‖ · ‖loc and ‖ · ‖exp indicate

pairwise location and expression measures, respectively. The resulting argument to

the exponential is no longer even the value of a metric, which breaks the connec-

tion to the described, diffusion-based approximation framework. We have developed

related techniques for analysis of joint data-dependent graphs and their associated

diffusion kernels in the context of hyperspectral imagery. These approaches, fusing

spatial and spectral information, have produced the best known classification results

with several classical data sets [6, 7].
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5.2.5 Results

After applying the LE-based data fusion approach presented above, followed

by k-means clustering, sets of genes that were both co-located and co-expressed were

identified. These locally correlated clusters (LCCs) were k-means-based clusters for

which (1) all genes were situated within a 4Mbp neighborhood, and (2) the average

pairwise absolute correlation relating cluster genes was greater than 0.2. Candidate

inter-chromosomal interactions were then identified by selecting LCCs on different

chromosomes with average pairwise (inter-cluster) absolute correlation greater than

0.18. These thresholds were motivated by the relative strength of the significance-

based pairwise absolute correlation threshold for the study data (0.3), as well as

the aim of obtaining an interaction network of reasonable size, but still amenable

to detailed analysis. Empirical significance estimates are provided for the resulting

intra and inter chromosomal interactions using an approach detailed in the results

section.

Applying the procedure detailed above, we were able to identify 114 LCCs,

distributed over 17 chromosomes. Their distribution is presented in Figure 5.1. Only

two LCCs (57 and 58) overlap, though many are situated fairly close to one another.

As previously noted, the average pairwise absolute correlation between cluster genes

was applied as a co-expression measure, and in what follows, we will refer to this

as the intra-cluster similarity measure. The maximum value for the latter over the

114 LCCs was 0.4993, with a median value of 0.2306. To estimate the relative

significance of these values, we applied a re-sampling-based approach. Specifically,

103



for each LCC, we constructed 10000 random sets of genes (drawn from the entire

data set), with each set taken to be the same size as the LCC (in terms of gene

count). We then computed the intra-cluster similarity measure for each of these

random sets. Finally, we derived a p-value for each LCC’s observed intra-cluster

similarity by taking the fraction of random gene sets with greater than or equal

intra-cluster similarity. For the majority of LCCs (103), no random set yielded

equal or greater intra-cluster similarity, indicating a p-value < 0.0001. For the

remainder, the maximum estimated p-value was 0.0009.

To assess interactions between LCCs, we once again computed the average

pairwise absolute correlation, but now with respect to ‘mixed pairs’, i.e. with one

gene taken from each of the two LCCs. We will refer to this average absolute

correlation as the inter-cluster similarity measure. Applying a threshold of 0.18, we

obtained a network (shown in Figure 5.2) of 60 LCCs participating in a total of 87

inter-chromosomal interactions. To estimate the significance of these interactions,

we applied a re-sampling-based approach similar to the one used for assessing the

intra-cluster similarity for individual LCCs. For each pair of LCCs, we computed

the inter-cluster similarity for 10000 randomly selected gene set pairs (with the same

gene count sizes as the relevant LCCs), and derived a p-value by taking the fraction

exceeding the particular observed inter-LCC similarity. For 22 of the 87 inter-

LCC interactions, no random sets yielded equal or greater inter-cluster similarity,

indicating a p-value < 0.0001. For the rest, the maximum estimated p-value was

0.0007.

The interaction network shown in Figure 5.2 features a clear hub cluster, LCC
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101. The latter is situated on chromosome 22, and prominently interacts with nu-

merous LCCs on chromosome 19. These candidate interactions are consistent with

the general observation that chromosomes 19 and 22 are among a group of small,

gene-rich chromosomes known to preferentially interact with one another [55]. To

further assess the obtained results, we compared the proposed LCC interactions with

published chromosomal contact maps obtained using the Hi-C technique [55]. In Fig-

ure 5.3, some contact map segments corresponding to the neighborhoods associated

with particular LCC 101 hub interactions (shown in Figure 5.2) are highlighted, and

appear to occur in high contact frequency regions. One caveat is that these physical

interaction maps were derived from a human cell line distinct from the NCI-60 set

used in this study. Still, one perspective is that prominent, expression-related fea-

tures of chromosomal domain organization may be relatively conserved over a range

of human cell types and physiological conditions.

Three notable features of the computed LCC interaction network are (1) its

dominant hub LCC 101, which makes 25 connections with other chromosomal do-

mains, (2) the relatively few predicted inter-chromosomal interactions associated

with other LCCs directly connected to the dominant hub, and (3) the fairly substan-

tial number of interacting elements relative to the total set of LCCs (60 of 114) . To

quantify and combine these attributes, we consider the following multi-component

measure computed from an adjacency matrix A:

‖A‖ =
1

deg(TopHub)
+ conn(TopHubCC) +

1

‖spec(A)‖1

.

Here deg(TopHub) indicates the number of connections associated with the top hub;
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conn(TopHubCC) is the relative connectivity of the connected component of the top

hub, i.e., the fraction of observed edges relative to all possible edges; ‖spec(A)‖1 is

the L1 norm of the set of eigenvalues of A, which is related to its rank, and increases

with the number of nodes involved in interactions. The essential interpretation

is that substantial, hub-structured networks will have smaller values of the above

measure, which is constructed from the most elementary, relevant mathematical

measures. Using this measure, we tried to assess the significance of the overall

computed network structure featuring the dominant hub LCC 101. To do so, we

constructed 1000 sets of 114 LCC length-matched random intervals, with at least

15 genes per random interval. (The latter restriction gives a median gene count

comparable to that observed over the 114 actual LCCs.) Adjacency matrices were

derived for each of these random networks by thresholding the inter-chromosomal

interactions at the similarity (average absolute correlation) value of 0.18, just as

with the constructed LCC interaction network. We found that only 41 of the 1000

random interaction networks had a smaller value for the above multi-component

measure than the LCC interaction network, giving the latter an estimated p-value

of 0.041.

5.2.6 Discussion

When considering the hub-structured LCC interaction network of Figure 5.2

in the context of gene expression-related features of chromosomal domain organi-

zation, an immediate question is the gene content of the main hub cluster 101. Its
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Table 5.4 Genes associated with hub LCC 101.

ANKRD54 BAIAP2L2 C22orf23 CARD10

CDC42EP EIF3L GCAT GGA1 H1F0 LGALS1

MAFFtf MFNG MICALL1 PDXP PICK1

PLA2G6 POLR2F SH3BP1 SOX10tf TRIOBP

20 associated genes are listed in Table 5.4. We note here that two transcription

factors are included in the localized cluster. One, MAFF, is a basic leucine zipper

transcription factor that is known to bind to an element in the promoter of the

oxytocin receptor (OTR) gene. The MAFF gene may also function more broadly

to regulate elements of the cellular stress response, though specific targets in LCCs

interacting with LCC 101 do not seem apparent. A second transcription factor in

LCC 101 is SOX10, a member of the of the SOX (SRY-related HMG-box) family of

transcription factors regulating aspects of cell fate determination during embryonic

development. Relatively few direct targets of the SOX10 gene product have been

identified, with 11 known or suspected targets discussed in [54]. Of these, only one

possible target, NGFR, was found in an LCC (61), but the latter was not among the

LCCs identified as inter-chromosomal interaction candidates. Overall, the dominant

hub-structured network of Figure 5.2 does not seem to be obviously explained by

specific, known regulatory interactions.

We additionally considered the set of genes contained in LCC 101 and its

immediately connected nodes. If these LCCs indeed represent a set of chromosomal

domains interacting in support coordinated gene expression, we would expect some
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enrichment for functionally related genes. To assess this, we applied the High-

Throughput GoMiner tool to perform a gene set enrichment analysis within the

framework of the Gene Ontology [89]. We found that the 852 genes associated with

the LCC 101 connected component were significantly enriched (p < 0.01, FDR <

0.01) for genes associated with immune responses. These included some known

gene clusters (e.g., a Human Leukocyte Antigen group on chromosome 6) as well as

additional genes drawn from multiple interacting LCCs.

More generally, we note that the presented approach for identifying and relat-

ing LCCs should be seen within a broader framework, built on kernel-based data

fusion and nonlinear data organization. This particular study is something of a

proof-of-concept, with certain somewhat strong assumptions made with the aim of

obtaining reasonable initial results for further assessment. For example, the applied

‘fusion kernel’ was somewhat location driven, with neighborhood (LE nearest neigh-

bor) parameters set to yield a connected location data graph that effectively related

all genes along a chromosome. This may be a natural choice for many gene-dense

chromosomes, whose location data graphs could be connected with small nearest

neighbor parameter settings. For larger chromosomes, with sparser or less uniform

gene distributions, a reasonable alternative approach might be a more modest pa-

rameter setting that yields a multi-component location data graph. Another LE

parameter - the location kernel bandwidth σ - could also be set on a chromosome

by chromosome basis. The latter was specified to impose a soft threshold around

a 2Mbp local neighborhood, but refinements might adjust this based on chromo-

some size and gene density. Our approach also integrated pairwise co-expression
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data with respect to the location-structured data graph, i.e., with the expression

kernel recording values only for neighborhood genes. The latter kernel was also

binary-valued, with pairwise expression similarities set to 1 whenever a statisti-

cal significance-based correlation threshold was exceeded. The intention with all

these choices was to accentuate, through the LE mapping, even modestly correlated

clusters that are well localized. An approach beginning with a non-binary-valued

expression kernel is also possible. For an initial study, we avoided this because the

parameter selection is somewhat less clear. Without careful tuning, the many highly

correlated but still (linearly) dispersed genes can come to dominate the combined

location and expression kernel.

We generally note that the presented framework is very flexible, and we hope

to assess variations building on its essential strengths:

• kernel-based fusion of heterogeneous data types

• nonlinear data organization in support of clustering and other learning ap-

proaches

• network-structured interaction maps amenable to detailed analysis and statis-

tical validation.

We are currently working to analyze relatively homogeneous subsets of the NCI-

60 (e.g., epithelial and melanoma-derived cell lines) to consider how the identified

LCC interaction networks might be altered, perhaps toward more tissue-specific

gene groups. Although the present focus has been on inter-chromosomal interaction

networks, construction of intra-chromosomal interaction networks is possible with
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the developed methods. These can potentially be focused toward noteworthy regions

initially identified through analysis restricted to inter-chromosomal interactions. We

are additionally working to develop theoretically-motivated refinements to kernel

construction and combination.
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Figure 5.1: Locations of locally correlated clusters. Circled clusters are additionally

correlated with other clusters on different chromosomes. Clusters generally do not

overlap (with just one exception), though some are situated relatively close to one

another. Clusters are numbered sequentially with respect to chromosome and start

location. In marked regions containing two or more closely spaced clusters, the

region is numbered with respect to the last associated cluster.
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Figure 5.2: Inter-chromosomal association network for locally correlated clusters.

(Numbering as in Figure 1, with colors used to indicate distinct chromosomes.)
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Figure 5.3: LCC 101 is associated with several other LCCs on different chromosomes,

as indicated by the clear hub structure seen in the interaction network of Figure

2. Some of these expression-based interactions are consistent with experimentally

measured physical interactions between human chromosomal regions. Lieberman-

Aiden et al. applied the Hi-C method to obtain contact maps between 1-Mbp

regions on different chromosomes in the human lymphoblastoid cell line GM06690

[55]. The intensity of each pixel in the above maps indicates the contact frequency

between two such regions. Overall, several of the computed candidate interactions

between the hub LCC 101 and LCCs on chromosomes 15 and 19 match regions that

have been determined to interact experimentally. These results support the idea

that co-expression of gene clusters on different chromosomes may be facilitated by

relatively stable patterns of chromosomal organization that place relevant regions

in close proximity [46, 28, 62]
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LCC LCC Hi-C data p-value
17 7 0.0027892
17 8 0.00048508
21 16 0.0033632
22 16 0.0033632
22 17 0.0022422

101 1 0.0016457
101 2 0.0074085
101 10 0.0048493
101 42 0.00494
101 68 0.0077963
101 69 0.0015593
101 70 0.0056054
104 1 0.00092407
104 10 0.001248
107 31 0.0057768

Table 2: My caption
Figure 5.4: Each of the LCC interaction-associated Hi-C data blocks shown in Figure

3 can be associated with a p-value. This is computed as the fraction of (equal

size) data blocks in the pairwise inter-chromosomal interaction map with contact

frequency equal or greater than that of the observed block. The p-values for the

blocks in the upper left map are 0.0054 (top) and 0.1214 (bottom). In the upper

right map, no other equal-size blocks matched or exceeded the contact frequency

associated with the top block. The middle and bottom blocks had p-values 0.0967

and 0.0111, respectively. P-values can similarly be computed for each of the 87

pairwise LCC interactions shown in Figure 2. Applying the Benjamini-Hochberg

procedure for controlling the false discovery rate (FDR) associated with a family of

hypothesis tests, the 15 LCC interactions indicated in the left table were determined

to be significant at FDR = 0.05.
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5.3 Identification of Drug Response-Related Gene Sets

5.3.1 Introduction

For most anti-cancer drugs, relatively little is known about the detailed mech-

anism of action. Even where targets have been defined, as with FDA-approved and

in-clinical-trial drugs, broader off-target effects remain poorly understood. These

notably include polypharmacology, as well as the integrative pathways beyond initial

targets that ultimately determine efficacy [40]. Cancer emerges though genetic and

epigenetic alterations that perturb molecular networks controlling cell growth, sur-

vival, and differentiation [34, 81]. To develop more targeted and efficacious cancer

treatments, it is essential to situate and understand drug actions in this networked,

systems-level context. The National Cancer Institute’s Laboratory of Molecular

Pharmacology (NCI-LMP) has developed a rich and growing array of databases to

support this foundational objective [66]. These include drug compound chemoac-

tivity data over the widely studied NCI-60 cancer cell lines, together with detailed

molecular profiling data for each cell line, such as transcript expression, gene copy

number, and gene sequence.

In this study, we present the results of an integrated analysis of gene expression

and chemoactivity profiling data over the NCI-60 cell lines. In particular, we use

a nonlinear data representation technique, Laplacian Eigenmaps [4], to organize

the chemoactivity data and identify coherent clusters of compounds sharing similar

response profiles over the NCI-60. The clusters are then organized in a network based

on their relative similarity. This drug cluster network is highly concordant with the
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existing understanding of compound class relationships, grouping known mechanism

of action drugs into coherent clusters, together with novel compounds sharing similar

response profiles. At the same time, the drug cluster network, organizing over 20000

compounds, reveals numerous clusters of response profile-related drugs with little or

no relation to clusters enriched for known mechanism of action drugs. These drug

compound clusters may represent agents that are active against novel targets and

pathways.

To better understand the gene sets and pathways implicated in their responses,

we merge the drug cluster network with a set of gene co-expression network modules

inferred using the WCGNA algorithm [41] applied to baseline gene expression data

over the NCI-60. This approach yields a joint network of drug clusters and gene

co-expression modules, relating groups of drugs to sets of genes whose expression

profiles are highly correlated with their response profiles. We show that sets of

known mechanism of action drug compounds lie within clusters that are linked to

co-expression network modules containing genes known to be implicated in their

response. We also find a novel interaction between a coherent drug cluster with no

known mechanism of action drugs and a co-expression network module organized

around the gene encoding the Bmx non-receptor tyrosine kinase. The Bmx protein

product has been implicated in several types of cancer, and is emerging as a highly

attractive target for drug development [39, 44].

We conclude by presenting some initial results from a novel approach to inte-

grated analysis of the gene expression and drug compound chemoactivity profiles.

While both of these types of data are ostensibly vectors of measurements over the
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NCI-60, their intra-class correlation structure is notably different. In particular, the

drug compound activity profiles have a distribution of pairwise correlations that is

notably shifted toward positive values. As a consequence, if compound activity pro-

files and gene expression profiles are directly clustered together, most compounds

fall into clusters with few to no genes, in spite of significant compound-gene associ-

ations. To try and organize the compounds and genes according to such relations

while preserving intra-group structure, we apply the joint embedding algorithm pre-

sented in Subsection 4.3.3. The results show some favorable attributes, which we

present, while discussing remaining challenges.

5.3.2 Data Sets

The analysis results presented in Subsection 5.3.4 are based on the data sets

described below.

• G is a 26065× 60 matrix with gene expression profiles over the NCI-60 orga-

nized along the rows. 10498 expression profiles have a single missing value in

one of three cell lines.

• C is a 20602× 60 matrix with drug compound chemoactivity profiles over the

NCI-60 organized along the rows. All chemoactivity profiles have observations

for at least 35 cell lines. 18012 profiles have at least one missing value. Among

these profiles, the median number of missing values is 4.

• G′ is a 26065× 57 matrix of complete gene expression profiles derived from G

by excluding 3 cell lines associated with all missing values.
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• C ′ is a 4149 × 57 matrix of complete drug compound chemoactivity profiles

derived from C, over the same set of 57 cell lines with gene expression mea-

surements recorded in G′.

We use e.g., G(i, ·), to denote the ith gene expression profile in G, with the cor-

responding notation similarly used to indicate profiles derived from the other data

sets. We additionally use NG, NC , NG′ , and NC′ to denote the number of drugs or

compounds in the data sets G, C, G′, and C ′, respectively.

The platforms used to provide the gene expression data are the Affymetrix

(Affymetrix Inc., Sunnyvale, CA) ∼ 60, 000 feature Human Genome U95 Set (HG-

U95) [71]; the ∼ 44, 000 feature Human Genome U133 (HG- U133); the ∼ 47, 000

feature Human Genome U133 Plus 2.0 Arrays (HG-U133 Plus 2.0), the ∼ 5, 500, 000

feature GeneChip Human Exon 1.0 ST array (GH Exon 1.0 ST) [65], and the Ag-

ilent (Agilent Technologies, Inc., Santa Clara, CA) ∼ 41, 000 feature Whole Hu-

man Genome Oligo Microarray [56]. For these gene expression data sets (accessible

at http://discover.nci.nih.gov/cellminer/) [66], all probes were put through

rigorous quality control. The first criterion was for each accepted probe expression

profile (across the 60 cell lines) to have an intensity range r satisfying log2 r > 1.2.

The second criterion was to use probes with a minimum average correlation to all

related probes of 0.60 when possible, or of 0.30 (p < 0.02) if not. The probe expres-

sion profiles that passed these steps were then standardized and averaged to obtain

gene-specific expression profiles integrating data derived from the various platforms.
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We use the term ‘drug’ to indicate chemical compounds tested in the NCI-

60 Developmental Therapeutics Program (DTP) human tumor cell line screen [73].

The latter screen uses the NCI-60 cancer cell lines to prioritize novel compounds

showing selective growth inhibition of particular tumor cell lines. These cell lines

encompass 9 tissues of origin, including breast, central nervous system, colon, lung,

prostate and renal cancers, as well as leukemia and melanomas. To assess poten-

tial associations between drug activity and mRNA expression levels, we use the

50% growth inhibitory concentrations (GI50) determined by the DTP. The activity

levels are specifically expressed as the negative log of the 50% growth inhibitory

concentration [-log10(GI50)], measured using a 48-hour sulphorhodamine B assay.

The drug activity data set include 353 drugs with putatively known mechanism of

action. Drug activity profiles are standardized in a manner analogous to the gene

expression profiles.

5.3.3 Analysis Methods

Drug Cluster - Gene Co-Expression Module Network Construction

The following procedure was applied to construct a network of drug compound

clusters and gene co-expression modules.

1. Compute the NC × NC drug compound activity profile similarity matrix SC ,

with SC(i, j) = Cor(C(i, ·), C(j, ·)), where Cor denotes the Pearson’s Corre-

lation computed over matched, non-missing entries in C(i, ·) and C(j, ·).
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2. Construct the NC ×NC compound data adjacency matrix WC , with

WC(i, j) = e
−(1−Cor(C(i,·),C(j,·))2

σC ,

if C(i, ·) is one of the k nearest neighbors of C(j, ·) by ‘correlation distance’

(1− Cor(C(i, ·), C(j, ·)), or vice versa; set WC(i, j) = 0 otherwise.

Select k to be the smallest value such that the data graph represented by WC

is connected (k = 16 for data set C).

Set σC to be the median squared correlation distance to the kth nearest neigh-

bor over all NC drug compounds.

3. Apply Laplacian Eigenmaps, essentially described in Section 2.4, but starting

from the application-specific construction of the data adjacency matrix WC

described in the preceding step. Let YC denote the NC × dC matrix used to

record the embedded data. (dC = 119, based on observation of a corresponding

‘gap’ in the ordered spectrum of the Laplacian matrix LC constructed from

WC).

4. Cluster the embedded compound activity data recorded along the rows YC

using average linkage hierarchical clustering with Euclidean distances. Apply

the Dynamic Tree Cut algorithm [50] to derive a set of clusters from the

hierarchical cluster tree. Let CC denote the set of drug compound clusters.

5. Apply the WCGNA algorithm [41] to construct a gene co-expression network

and a corresponding set of co-expression modules using pairwise absolute cor-

relation values. Let MG denote the set of co-expression modules.
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6. For each compound cluster in CC , identify the cluster hub compound as the

compound with the strongest total, i.e., summed, pairwise correlation to other

cluster compounds. Similarly, identify the module hub gene for each co-

expression module in MG.

7. Form a drug cluster - gene co-expression module network by linking elements

of CC andMG if their hub-to-hub correlation values exceed a threshold τ > 0.

Drug Compound Activity Profile - Gene Expression Profile Joint Em-

bedding

The joint embedding algorithm introduced in Subsection 4.3.3 was applied to

the data sets G′ and C ′. In particular, in terms of the notation associated with the

algorithm description, we set X = C ′ and Y = G′. The joint embedding was thus

constructed by mapping embedded compound data into the embedded gene data

space. An initial bijection between subsets of X = C ′ and Y = G′ was constructed

by setting X ′ = C ′ and Y ′ = G′cor, where G′cor was a subset of gene expression

profiles in G′ matched to the set of compound activity profiles in C ′ based on

the Pearson’s correlation. In particular, pairwise correlations between the activity

profiles in C ′ and the expression profiles in G′ were computed, ranked in decreasing

order, and used to select the strongest correlation-based gene-compound pairings.

The algorithm parameters were set to be kX = kY = 16, γ2 = 0.95, γd = 0.1, and

NF = 200. These settings yielded a joint embedding dimension of d = 240. We will

refer to the jointly embedded compound activity and gene expression data sets as
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CJ ∈ RNC′×d and GJ ∈ RNG′×d, respectively.

5.3.4 Results and Discussion

Applying the initial analysis workflow presented at the start of Subsection

5.3.3, we obtain a network of 105 drug compound clusters shown in Figure 5.5.

Known mechanism of action compound classes are distributed within clusters in a

manner consistent with understanding of their relationships. For example, DNA

damaging agents, such as Topoisomerase 1 and 2 inhibitors and alkylating agents

are concentrated in a clique of tightly interacting clusters in the upper left corner

of Figure 5.5. Some cluster statistics for these highly connected DNA-damaging

agent-enriched clusters are presented in a table above the set of clusters. The cluster

coherence is indicated by the median correlation of cluster compounds to the cluster

hub compound, together with the corresponding interquartile range (IQR). Classes

of compounds, such as the kinase inhibitors, known to act on a broader range of

protein targets and pathways show a more distributed cluster distribution.

Figure 5.6 shows the same set of 105 clusters shown in Figure 5.5, with ad-

ditional links indicating strong interactions with particular co-expression network

modules. A correlation threshold of 0.60 is used for ease of visualization in the

figures, though correlations greater than 0.26 are significant at p < 0.05 for the

study data. To assess the extent to which known compound-response related gene

interactions are reflected in the drug cluster - co-expression module network, we ex-

amined linked clusters and modules for these underlying elements. Some examples
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of recovered associations are shown for DNA damaging agents and kinase inhibitors

in Figures 5.7 and 5.8, respectively.

Figure 5.6 indicates a substantial number drug clusters with no known mech-

anism of action compounds. To investigate these, we ranked such clusters by their

coherence, taking the ratio of the median hub correlation to the corresponding IQR,

and selected the most coherent clusters participating in strong interactions with

similarly coherent co-expression modules. As an example, we mention one such

interaction, shown in Figure 5.9. The implicated drug compound cluster, D40, is

highly coherent, with a median hub correlation of 0.84, and corresponding IQR of

0.29. Its interacting co-expression module is organized around the Bmx gene, which,

as noted in the opening discussion, is a non-receptor tyrosine kinase implicated in

several cancers. A pattern comparison of the Bmx gene expression and D40 hub

compound activity profiles shows that the strong association is driven by a single,

in this case, melanoma cell line. We have verified the accuracy of the associated

measurements at the level of the raw gene expression and compound activity data.

Although these strong associations do not guarantee that the D40 hub compound

is targeting Bmx, as compared to perhaps some other co-regulated protein in its

signaling pathway, there are no other cancer-implicated kinases or similarly likely

targets in the Bmx module. We are currently evaluating compounds in the D40

drug cluster for possible assessment against Bmx in a direct kinase inhibition assay.

The strong interactions indicated in Figure 5.6, which include only a fraction

of the statistically significant interactions, show that the gene and drug data graphs

can be meaningfully inter-related. An immediate idea is to directly cluster the gene
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expression and compound activity profiles, as measurements over a common set

of cell lines. The limitations of such a straightforward approach are illustrated in

Figures 5.10 and 5.11. Figure 5.10 shows that the genes and drug profiles have

rather different pairwise correlation distributions, with the compounds showing a

pronounced shift toward positive correlations. This is not surprising in view of the

development of the drug databases under study, with many compounds synthesized

through small variations of existing ones, leading to groups of compounds with highly

correlated activity profiles. As consequence, a direct clustering of compound and

gene profiles places most compounds in clusters with few genes. This is illustrated

in the left plot of Figure 5.11. A more detailed accounting of the cluster composition

shows that, with a direct clustering using the k-means algorithm, just over 2/3 of

the compounds fall into clusters with a fraction of compounds greater than 90%.

To try and organize the compounds and drugs in a manner consistent with

the significant interactions shown in Figures 5.6, 5.7, and 5.8, we applied the joint

embedding algorithm presented in Subsection 4.3.3, as described in Subsection 5.3.3

of the present study. As with the original gene and compound profiles, k-means was

applied to the jointly embedded gene and drug data. The initial results of these

experiments were mixed. Compounds were less concentrated in compound-specific

clusters, as compared with the clustering based on the original data. The cluster

compositions associated with the jointly embedded data are shown in the right plot

of Figure 5.11. With the jointly embedded data, just under 1/5 of the compounds

were in clusters with a fraction of compounds greater than 90%. Some clusters

with substantial numbers of activity profile-correlated, known mechanism of action
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compounds were found, showing that the embedding preserved certain expected

relations. But overall, the correlations between compounds and genes co-embedded

and clustered together was not strong as with seen with the cluster network - gene

co-expression module analysis.

Consideration of the theory developed in Section 4.3 suggests that the root

problem could be the quality of the initial bijection constructed as described in

Subsection 5.3.3, based on correlations between a set of compounds and a much

larger set of genes. We are experimenting with alternative approaches for ‘seeding’

the initial alignment of the data networks. One promising idea is to cluster the

gene and compound data separately, identify cluster hubs, construct a bijection

between these hubs, and use this bijection to run the joint embedding algorithm of

Subsection 4.3.3. This approach is similar in spirit to the construction of drug cluster

- gene co-expression module network illustrated in Figure 5.6. It seems plausible,

with a reasonable number of clusters, since the joint embedding algorithm only

requires enough cluster hub-specified points to form frames, i.e., spanning sets, for

the respective compound and gene data spaces.
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Figure 5.5: Network of 105 drug compound clusters showing clusters containing

3 or more known mechanism of action compounds, together with the dominant

compound category. Edges indicate cluster hub-hub correlations greater than 0.6 in

magnitude, with positive correlations in black and negative correlations in red.
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Figure 5.6: Joint network of 105 drug compound clusters and 139 gene co-expression

modules, with co-expression modules in blue, drug clusters containing known mech-

anism of action compounds in dark red, and drug clusters containing only unknown

mechanism of action compounds in light red. Edges indicate cluster/module hub-

hub correlations greater than 0.6 in magnitude, with positive correlations in black

and negative correlations in red. 127



D10-G2 DNA Damaging Drug Activity - DNA Damage Response Gene Expression Correlations
266046 271674 363812 RAD51L3 MSH5 TOP1MT

266046 1 0.815 0.811 0.412 0.315 0.428
271674 0.815 1 0.902 0.338 0.375 0.414
363812 0.811 0.902 1 0.374 0.326 0.359
RAD51L3 0.412 0.338 0.374 1 0.357 0.125
MSH5 0.315 0.375 0.326 0.357 1 0.313
TOP1MT 0.428 0.414 0.359 0.125 0.313 1

D20-G2 DNA Damaging Drug Activity - DNA Damage Response Gene Expression Correlations
762 3088 6396 8806 9706 34462 132313 296934 RAD51L3 MSH5 DMC1

762 1 0.848 0.782 0.813 0.795 0.856 0.801 0.778 0.416 0.287 0.414
3088 0.848 1 0.927 0.945 0.945 0.978 0.905 0.897 0.352 0.287 0.452
6396 0.782 0.927 1 0.906 0.986 0.935 0.964 0.941 0.341 0.266 0.392
8806 0.813 0.945 0.906 1 0.914 0.947 0.901 0.893 0.28 0.34 0.466
9706 0.795 0.945 0.986 0.914 1 0.957 0.973 0.93 0.371 0.282 0.376
34462 0.856 0.978 0.935 0.947 0.957 1 0.928 0.915 0.352 0.299 0.392
132313 0.801 0.905 0.964 0.901 0.973 0.928 1 0.924 0.367 0.297 0.369
296934 0.778 0.897 0.941 0.893 0.93 0.915 0.924 1 0.331 0.266 0.282
RAD51L3 0.416 0.352 0.341 0.28 0.371 0.352 0.367 0.331 1 0.357 0.238
MSH5 0.287 0.287 0.266 0.34 0.282 0.299 0.297 0.266 0.357 1 0.267
DMC1 0.414 0.452 0.392 0.466 0.376 0.392 0.369 0.282 0.238 0.267 1

D10-G7 DNA Damaging Drug Activity - DNA Damage Response Gene Expression Correlations
266046 271674 363812 366140 354646 268242 APLF

266046 1 0.815 0.811 0.483 0.593 0.726 -0.42
271674 0.815 1 0.902 0.389 0.522 0.769 -0.436
363812 0.811 0.902 1 0.361 0.529 0.688 -0.421
366140 0.483 0.389 0.361 1 0.405 0.616 -0.385
354646 0.593 0.522 0.529 0.405 1 0.65 -0.267
268242 0.726 0.769 0.688 0.616 0.65 1 -0.385
APLF -0.42 -0.436 -0.421 -0.385 -0.267 -0.385 1

D53-G126 DNA Damaging Drug Activity - DNA Damage Response Gene Expression Correlations
63878 105014 145668 287459 606869 FANCA

63878 1 0.674 0.91 0.785 0.604 0.43
105014 0.674 1 0.574 0.607 0.707 0.316
145668 0.91 0.574 1 0.749 0.545 0.365
287459 0.785 0.607 0.749 1 0.708 0.314
606869 0.604 0.707 0.545 0.708 1 0.36
FANCA 0.43 0.316 0.365 0.314 0.36 1

Figure 5.7: Pairwise correlations between known DNA damaging drug compounds

and DNA damage response genes. Correlations shown in bold are significant at

p < 0.05, without adjustment for multiple testing.
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D23-G3 Kinase Inhibitor Activity - Kinase Gene Expression Correlations
354462 741078 761431 679828 FYN CDK2 PRKCD PRKCE STK10

354462 1 0.658 0.754 0.574 0.338 0.456 0.556 0.51 0.488
741078 0.658 1 0.632 0.629 0.29 0.331 0.637 0.447 0.499
761431 0.754 0.632 1 0.619 0.379 0.499 0.62 0.663 0.495
679828 0.574 0.629 0.619 1 0.37 0.272 0.593 0.426 0.475
FYN 0.338 0.29 0.379 0.37 1 0.466 0.256 0.315 0.517
CDK2 0.456 0.331 0.499 0.272 0.466 1 0.411 0.602 0.331
PRKCD 0.556 0.637 0.62 0.593 0.256 0.411 1 0.527 0.623
PRKCE 0.51 0.447 0.663 0.426 0.315 0.602 0.527 1 0.44
STK10 0.488 0.499 0.495 0.475 0.517 0.331 0.623 0.44 1

D23-G6 Kinase Inhibitor Activity - Kinase Gene Expression Correlations
354462 741078 764042 AXL DCLK2 NUAK1

354462 1 0.658 0.56 -0.472 -0.357 -0.377
741078 0.658 1 0.952 -0.38 -0.321 -0.416
764042 0.56 0.952 1 -0.273 -0.257 -0.389
AXL -0.472 -0.38 -0.273 1 0.492 0.603
DCLK2 -0.357 -0.321 -0.257 0.492 1 0.508
NUAK1 -0.377 -0.416 -0.389 0.603 0.508 1

Figure 5.8: Pairwise correlations between known kinase inhibitors and kinase tar-

gets. Correlations shown in bold are significant at p < 0.05, without adjustment for

multiple comparisons.
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their primary expression in hematopoietic cells, these kinases 
have been most extensively studied as downstream effectors 
of antigen activation in lymphocytes. 
 Due to these important physiologic functions of the Tec 
kinases, defects in the involved signaling pathways often 
play a role in various human diseases. Mutations affecting 
Itk and Rlk lead to reduced antigen-receptor induced cyto-
kine production, proliferation, and migration in T lympho-
cytes. This neither prevents T cell signaling nor development 
but instead alters the efficiency or type of T lymphocyte re-
sponse. Notably, Itk-deficiency impairs TH2 responses as-
sociated with asthma and allergy, making Itk an attractive 
therapeutic target for such diseases [9-11]. A variety of in-
hibitors have been described, and they have potential to treat 
these disorders [12, 13]. The human primary immunodefi-
ciency X-linked (Bruton’s) agammaglobulinemia, which is 
characterized by impaired B cell development and function, 
is due to mutations disrupting Btk function [14]. Addition-
ally, activation of the B-cell antigen receptor (BCR) signal-
ing pathway contributes to the initiation and maintenance of 
B-cell malignancies [15]. The irreversible Btk inhibitor PCI-
32765 (Ibrutinib, Janssen Pharmaceutical Division of John-
son & Johnson) has shown efficacy in models for such dis-
eases [16]. Other Tec family kinases, such as Bmx, have also 
shown potential as targets for malignant disorders.  
 Bmx is specifically involved in tumorigenicity, adhesion, 
motility, angiogenesis, proliferation and differentiation. It is 
overexpressed in metastatic breast [17-19] and prostate can-

cers [20, 21] and has been implicated in the neuroendocrine 
transformation of prostate cells. Oncogenes such as Src, 
FAK, and PI3K are upstream regulators of Bmx. Down-
stream targets of Bmx that play a role in malignancy include 
Akt, STAT3, and p21 activated kinase 1 (PAK1). The link 
between PI3K and STAT3 activation through Bmx has re-
cently gained attention as a potentially new and critical sig-
naling axis for the oncogenic phenotype [22, 23]. Extensive 
reviews on the cell signaling cascades of the Tec family 
kinases have been previously published [1, 3, 4]. Inhibition 
of Bmx in cell-based studies demonstrates diminished cellu-
lar transformation, proliferation and migration. These studies 
have highlighted how this particular Tec family kinase might 
represent a novel target for malignant disorders (see Current 
and Future Developments below). Importantly, homozygous 
Bmx knockout mice have a normal lifespan without any ob-
viously altered phenotype, suggesting that therapies based on 
Bmx inhibition might have relatively few side effects [24]. 
This review will focus on recently patented inhibitors of 
Bmx and will be followed by a review of the scientific litera-
ture supporting their potential uses to treat malignant disor-
ders.  

RECENT PATENTS FOR BMX INHIBITORS 

 Due to the structural homology among kinases, numerous 
patents exist that mention Bmx as a potential target for the 
compounds described within. This review will focus pre-
dominantly on those patents issued since 2009 for which 
specific data on Bmx inhibition is presented; either within  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1): Diagram depicting the two-step activation process of Bmx [1, 3, 4]. 1) Bmx is recruited to the membrane by interaction with the 
phospholipid PIP3 or by interaction with other proteins such as Janus Kinase (JAK), Focal Adhesion Kinase (FAK), or G-protein Coupled 
Receptors (GPCR). 2) The Src Family Kinases (SFKs) then phosphorylate Bmx leading to activation and downstream signaling. 

Figure 5.9: Pattern comparison of Bmx hub gene expression profile and NSC642932

hub compound chemoactivity profile. Bmx pathway figure adapted from [44].
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Figure 5.10: Comparison of intra-data class pairwise correlation distributions: drug

compound activity profiles versus gene expression profiles.

Figure 5.11: Comparison of k-means cluster composition: original drug activity and

gene expression profiles (left) versus jointly embedded data (right).
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