38 research outputs found

    Localization and Manipulation of Small Parts Using GelSight Tactile Sensing

    Get PDF
    Robust manipulation and insertion of small parts can be challenging because of the small tolerances typically involved. The key to robust control of these kinds of manipulation interactions is accurate tracking and control of the parts involved. Typically, this is accomplished using visual servoing or force-based control. However, these approaches have drawbacks. Instead, we propose a new approach that uses tactile sensing to accurately localize the pose of a part grasped in the robot hand. Using a feature-based matching technique in conjunction with a newly developed tactile sensing technology known as GelSight that has much higher resolution than competing methods, we synthesize high-resolution height maps of object surfaces. As a result of these high-resolution tactile maps, we are able to localize small parts held in a robot hand very accurately. We quantify localization accuracy in benchtop experiments and experimentally demonstrate the practicality of the approach in the context of a small parts insertion problem.National Science Foundation (U.S.) (NSF Grant No. 1017862)United States. National Aeronautics and Space Administration (NASA under Grant No. NNX13AQ85G)United States. Office of Naval Research (ONR Grant No. N000141410047

    HySenSe: A Hyper-Sensitive and High-Fidelity Vision-Based Tactile Sensor

    Full text link
    In this paper, to address the sensitivity and durability trade-off of Vision-based Tactile Sensor (VTSs), we introduce a hyper-sensitive and high-fidelity VTS called HySenSe. We demonstrate that by solely changing one step during the fabrication of the gel layer of the GelSight sensor (as the most well-known VTS), we can substantially improve its sensitivity and durability. Our experimental results clearly demonstrate the outperformance of the HySenSe compared with a similar GelSight sensor in detecting textural details of various objects under identical experimental conditions and low interaction forces (<= 1.5 N).Comment: Accepted to IEEE Sensors 2022 Conferenc

    Tactile Mapping and Localization from High-Resolution Tactile Imprints

    Full text link
    This work studies the problem of shape reconstruction and object localization using a vision-based tactile sensor, GelSlim. The main contributions are the recovery of local shapes from contact, an approach to reconstruct the tactile shape of objects from tactile imprints, and an accurate method for object localization of previously reconstructed objects. The algorithms can be applied to a large variety of 3D objects and provide accurate tactile feedback for in-hand manipulation. Results show that by exploiting the dense tactile information we can reconstruct the shape of objects with high accuracy and do on-line object identification and localization, opening the door to reactive manipulation guided by tactile sensing. We provide videos and supplemental information in the project's website http://web.mit.edu/mcube/research/tactile_localization.html.Comment: ICRA 2019, 7 pages, 7 figures. Website: http://web.mit.edu/mcube/research/tactile_localization.html Video: https://youtu.be/uMkspjmDbq

    GelSlim: A High-Resolution, Compact, Robust, and Calibrated Tactile-sensing Finger

    Full text link
    This work describes the development of a high-resolution tactile-sensing finger for robot grasping. This finger, inspired by previous GelSight sensing techniques, features an integration that is slimmer, more robust, and with more homogeneous output than previous vision-based tactile sensors. To achieve a compact integration, we redesign the optical path from illumination source to camera by combining light guides and an arrangement of mirror reflections. We parameterize the optical path with geometric design variables and describe the tradeoffs between the finger thickness, the depth of field of the camera, and the size of the tactile sensing area. The sensor sustains the wear from continuous use -- and abuse -- in grasping tasks by combining tougher materials for the compliant soft gel, a textured fabric skin, a structurally rigid body, and a calibration process that maintains homogeneous illumination and contrast of the tactile images during use. Finally, we evaluate the sensor's durability along four metrics that track the signal quality during more than 3000 grasping experiments.Comment: RA-L Pre-print. 8 page

    Shear-invariant Sliding Contact Perception with a Soft Tactile Sensor

    Full text link
    Manipulation tasks often require robots to be continuously in contact with an object. Therefore tactile perception systems need to handle continuous contact data. Shear deformation causes the tactile sensor to output path-dependent readings in contrast to discrete contact readings. As such, in some continuous-contact tasks, sliding can be regarded as a disturbance over the sensor signal. Here we present a shear-invariant perception method based on principal component analysis (PCA) which outputs the required information about the environment despite sliding motion. A compliant tactile sensor (the TacTip) is used to investigate continuous tactile contact. First, we evaluate the method offline using test data collected whilst the sensor slides over an edge. Then, the method is used within a contour-following task applied to 6 objects with varying curvatures; all contours are successfully traced. The method demonstrates generalisation capabilities and could underlie a more sophisticated controller for challenging manipulation or exploration tasks in unstructured environments. A video showing the work described in the paper can be found at https://youtu.be/wrTM61-pieUComment: Accepted in ICRA 201

    Connecting Look and Feel: Associating the visual and tactile properties of physical materials

    Full text link
    For machines to interact with the physical world, they must understand the physical properties of objects and materials they encounter. We use fabrics as an example of a deformable material with a rich set of mechanical properties. A thin flexible fabric, when draped, tends to look different from a heavy stiff fabric. It also feels different when touched. Using a collection of 118 fabric sample, we captured color and depth images of draped fabrics along with tactile data from a high resolution touch sensor. We then sought to associate the information from vision and touch by jointly training CNNs across the three modalities. Through the CNN, each input, regardless of the modality, generates an embedding vector that records the fabric's physical property. By comparing the embeddings, our system is able to look at a fabric image and predict how it will feel, and vice versa. We also show that a system jointly trained on vision and touch data can outperform a similar system trained only on visual data when tested purely with visual inputs
    corecore