67,132 research outputs found

    Firefly Algorithm: Recent Advances and Applications

    Full text link
    Nature-inspired metaheuristic algorithms, especially those based on swarm intelligence, have attracted much attention in the last ten years. Firefly algorithm appeared in about five years ago, its literature has expanded dramatically with diverse applications. In this paper, we will briefly review the fundamentals of firefly algorithm together with a selection of recent publications. Then, we discuss the optimality associated with balancing exploration and exploitation, which is essential for all metaheuristic algorithms. By comparing with intermittent search strategy, we conclude that metaheuristics such as firefly algorithm are better than the optimal intermittent search strategy. We also analyse algorithms and their implications for higher-dimensional optimization problems.Comment: 15 page

    Optimisation of Mobile Communication Networks - OMCO NET

    Get PDF
    The mini conference ā€œOptimisation of Mobile Communication Networksā€ focuses on advanced methods for search and optimisation applied to wireless communication networks. It is sponsored by Research & Enterprise Fund Southampton Solent University. The conference strives to widen knowledge on advanced search methods capable of optimisation of wireless communications networks. The aim is to provide a forum for exchange of recent knowledge, new ideas and trends in this progressive and challenging area. The conference will popularise new successful approaches on resolving hard tasks such as minimisation of transmit power, cooperative and optimal routing

    Evolving Pacing Strategies for Team Pursuit Track Cycling

    Full text link
    Team pursuit track cycling is a bicycle racing sport held on velodromes and is part of the Summer Olympics. It involves the use of strategies to minimize the overall time that a team of cyclists needs to complete a race. We present an optimisation framework for team pursuit track cycling and show how to evolve strategies using metaheuristics for this interesting real-world problem. Our experimental results show that these heuristics lead to significantly better strategies than state-of-art strategies that are currently used by teams of cyclists

    Practical application of pseudospectral optimization to robot path planning

    Get PDF
    To obtain minimum time or minimum energy trajectories for robots it is necessary to employ planning methods which adequately consider the platformā€™s dynamic properties. A variety of sampling, graph-based or local receding-horizon optimisation methods have previously been proposed. These typically use simpliļ¬ed kino-dynamic models to avoid the signiļ¬cant computational burden of solving this problem in a high dimensional state-space. In this paper we investigate solutions from the class of pseudospectral optimisation methods which have grown in favour amongst the optimal control community in recent years. These methods have high computational efficiency and rapid convergence properties. We present a practical application of such an approach to the robot path planning problem to provide a trajectory considering the robotā€™s dynamic properties. We extend the existing literature by augmenting the path constraints with sensed obstacles rather than predeļ¬ned analytical functions to enable real world application

    GOGMA: Globally-Optimal Gaussian Mixture Alignment

    Full text link
    Gaussian mixture alignment is a family of approaches that are frequently used for robustly solving the point-set registration problem. However, since they use local optimisation, they are susceptible to local minima and can only guarantee local optimality. Consequently, their accuracy is strongly dependent on the quality of the initialisation. This paper presents the first globally-optimal solution to the 3D rigid Gaussian mixture alignment problem under the L2 distance between mixtures. The algorithm, named GOGMA, employs a branch-and-bound approach to search the space of 3D rigid motions SE(3), guaranteeing global optimality regardless of the initialisation. The geometry of SE(3) was used to find novel upper and lower bounds for the objective function and local optimisation was integrated into the scheme to accelerate convergence without voiding the optimality guarantee. The evaluation empirically supported the optimality proof and showed that the method performed much more robustly on two challenging datasets than an existing globally-optimal registration solution.Comment: Manuscript in press 2016 IEEE Conference on Computer Vision and Pattern Recognitio

    Numerical optimisation in spot detector design

    Get PDF
    Spots are image details resulting from objects, the projections of which are so small that the inner structure of these objects cannot be resolved from their image. Spot detectors are image operators aiming at the detection and localisation of spots in the image. Most spot detectors can be tuned with parameters. This paper addresses the problem of how to select the parameters. We propose to use carefully designed test images, a performance measure, and numerical optimisation techniques to solve this problem. Several optimisation methods are compared, and their adequacy for spot detector design is tested

    Firefly Algorithm, Stochastic Test Functions and Design Optimisation

    Full text link
    Modern optimisation algorithms are often metaheuristic, and they are very promising in solving NP-hard optimization problems. In this paper, we show how to use the recently developed Firefly Algorithm to solve nonlinear design problems. For the standard pressure vessel design optimisation, the optimal solution found by FA is far better than the best solution obtained previously in literature. In addition, we also propose a few new test functions with either singularity or stochastic components but with known global optimality, and thus they can be used to validate new optimisation algorithms. Possible topics for further research are also discussed.Comment: 12 pages, 11 figure
    • ā€¦
    corecore