79 research outputs found

    Cycles in Random Bipartite Graphs

    Full text link
    In this paper we study cycles in random bipartite graph G(n,n,p)G(n,n,p). We prove that if pn2/3p\gg n^{-2/3}, then G(n,n,p)G(n,n,p) a.a.s. satisfies the following. Every subgraph GG(n,n,p)G'\subset G(n,n,p) with more than (1+o(1))n2p/2(1+o(1))n^2p/2 edges contains a cycle of length tt for all even t[4,(1+o(1))n/30]t\in[4,(1+o(1))n/30]. Our theorem complements a previous result on bipancyclicity, and is closely related to a recent work of Lee and Samotij.Comment: 8 pages, 2 figure

    Generating random graphs in biased Maker-Breaker games

    Full text link
    We present a general approach connecting biased Maker-Breaker games and problems about local resilience in random graphs. We utilize this approach to prove new results and also to derive some known results about biased Maker-Breaker games. In particular, we show that for b=o(n)b=o\left(\sqrt{n}\right), Maker can build a pancyclic graph (that is, a graph that contains cycles of every possible length) while playing a (1:b)(1:b) game on E(Kn)E(K_n). As another application, we show that for b=Θ(n/lnn)b=\Theta\left(n/\ln n\right), playing a (1:b)(1:b) game on E(Kn)E(K_n), Maker can build a graph which contains copies of all spanning trees having maximum degree Δ=O(1)\Delta=O(1) with a bare path of linear length (a bare path in a tree TT is a path with all interior vertices of degree exactly two in TT)

    The number of Hamiltonian decompositions of regular graphs

    Full text link
    A Hamilton cycle in a graph Γ\Gamma is a cycle passing through every vertex of Γ\Gamma. A Hamiltonian decomposition of Γ\Gamma is a partition of its edge set into disjoint Hamilton cycles. One of the oldest results in graph theory is Walecki's theorem from the 19th century, showing that a complete graph KnK_n on an odd number of vertices nn has a Hamiltonian decomposition. This result was recently greatly extended by K\"{u}hn and Osthus. They proved that every rr-regular nn-vertex graph Γ\Gamma with even degree r=cnr=cn for some fixed c>1/2c>1/2 has a Hamiltonian decomposition, provided n=n(c)n=n(c) is sufficiently large. In this paper we address the natural question of estimating H(Γ)H(\Gamma), the number of such decompositions of Γ\Gamma. Our main result is that H(Γ)=r(1+o(1))nr/2H(\Gamma)=r^{(1+o(1))nr/2}. In particular, the number of Hamiltonian decompositions of KnK_n is n(1o(1))n2/2n^{(1-o(1))n^2/2}

    Robustness of Randomized Rumour Spreading

    Get PDF
    In this work we consider three well-studied broadcast protocols: Push, Pull and Push&Pull. A key property of all these models, which is also an important reason for their popularity, is that they are presumed to be very robust, since they are simple, randomized, and, crucially, do not utilize explicitly the global structure of the underlying graph. While sporadic results exist, there has been no systematic theoretical treatment quantifying the robustness of these models. Here we investigate this question with respect to two orthogonal aspects: (adversarial) modifications of the underlying graph and message transmission failures. We explore in particular the following notion of Local Resilience: beginning with a graph, we investigate up to which fraction of the edges an adversary has to be allowed to delete at each vertex, so that the protocols need significantly more rounds to broadcast the information. Our main findings establish a separation among the three models. It turns out that Pull is robust with respect to all parameters that we consider. On the other hand, Push may slow down significantly, even if the adversary is allowed to modify the degrees of the vertices by an arbitrarily small positive fraction only. Finally, Push&Pull is robust when no message transmission failures are considered, otherwise it may be slowed down. On the technical side, we develop two novel methods for the analysis of randomized rumour spreading protocols. First, we exploit the notion of self-bounding functions to facilitate significantly the round-based analysis: we show that for any graph the variance of the growth of informed vertices is bounded by its expectation, so that concentration results follow immediately. Second, in order to control adversarial modifications of the graph we make use of a powerful tool from extremal graph theory, namely Szemer\`edi's Regularity Lemma.Comment: version 2: more thorough literature revie

    Random subgraphs make identification affordable

    Full text link
    An identifying code of a graph is a dominating set which uniquely determines all the vertices by their neighborhood within the code. Whereas graphs with large minimum degree have small domination number, this is not the case for the identifying code number (the size of a smallest identifying code), which indeed is not even a monotone parameter with respect to graph inclusion. We show that every graph GG with nn vertices, maximum degree Δ=ω(1)\Delta=\omega(1) and minimum degree δclogΔ\delta\geq c\log{\Delta}, for some constant c>0c>0, contains a large spanning subgraph which admits an identifying code with size O(nlogΔδ)O\left(\frac{n\log{\Delta}}{\delta}\right). In particular, if δ=Θ(n)\delta=\Theta(n), then GG has a dense spanning subgraph with identifying code O(logn)O\left(\log n\right), namely, of asymptotically optimal size. The subgraph we build is created using a probabilistic approach, and we use an interplay of various random methods to analyze it. Moreover we show that the result is essentially best possible, both in terms of the number of deleted edges and the size of the identifying code
    corecore