20 research outputs found

    Development of CUiris: A Dark-Skinned African Iris Dataset for Enhancement of Image Analysis and Robust Personal Recognition

    Get PDF
    Iris recognition algorithms, especially with the emergence of large-scale iris-based identification systems, must be tested for speed and accuracy and evaluated with a wide range of templates – large size, long-range, visible and different origins. This paper presents the acquisition of eye-iris images of dark-skinned subjects in Africa, a predominant case of verydark- brown iris images, under near-infrared illumination. The peculiarity of these iris images is highlighted from the histogram and normal probability distribution of their grayscale image entropy (GiE) values, in comparison to Asian and Caucasian iris images. The acquisition of eye-images for the African iris dataset is ongoing and will be made publiclyavailable as soon as it is sufficiently populated

    Pigment Melanin: Pattern for Iris Recognition

    Full text link
    Recognition of iris based on Visible Light (VL) imaging is a difficult problem because of the light reflection from the cornea. Nonetheless, pigment melanin provides a rich feature source in VL, unavailable in Near-Infrared (NIR) imaging. This is due to biological spectroscopy of eumelanin, a chemical not stimulated in NIR. In this case, a plausible solution to observe such patterns may be provided by an adaptive procedure using a variational technique on the image histogram. To describe the patterns, a shape analysis method is used to derive feature-code for each subject. An important question is how much the melanin patterns, extracted from VL, are independent of iris texture in NIR. With this question in mind, the present investigation proposes fusion of features extracted from NIR and VL to boost the recognition performance. We have collected our own database (UTIRIS) consisting of both NIR and VL images of 158 eyes of 79 individuals. This investigation demonstrates that the proposed algorithm is highly sensitive to the patterns of cromophores and improves the iris recognition rate.Comment: To be Published on Special Issue on Biometrics, IEEE Transaction on Instruments and Measurements, Volume 59, Issue number 4, April 201

    Comparative Analysis of Iris Segmentation and Iris Feature Extraction Techniques

    Get PDF
    Iris recognition is identification and verification of an individual based on their respective unique iris patterns. This system is preferred because it is stable: Iris of an individual does not change by the passing of time; Unique: Each person has a different Iris pattern; Flexible: it can easily be incorporated into security systems; Reliable: No theft because people can�t create an iris of another person;In our survey project the processes of Iris segmentation and Feature Extraction have been studied in depth.In this survey paper the various techniques that are used in Iris segmentation and Feature extraction processes are compared and analysed and a conclusion is drawn from them

    Feature Selection Method for Iris Recognition Authentication System

    Get PDF
    Iris-based biometric authentication is gaining importance in recent times. Iris biometric processing however, is a complex process and computationally very expensive. In the overall processing of iris biometric in an iris-based biometric authentication system, feature selection is an important task. In feature selection, we ex-tract iris features, which are ultimately used in matching. Since there is a large number of iris features and computational time increases as the number of features increases, it is therefore a challenge to develop an iris processing system with as few as possible number of features and at the same time without compromising the correctness. In this paper, we address this issue and present an approach to feature Selection Method

    Iris Recognition with Fake Identification

    Get PDF
    Iris recognition, the ability to recognize and distinguish individuals by their pattern, is the most reliable biometric in terms of recognition and identification performance. However, performance of these systems is affected by the heterogeneous images (regarding focus, contrast, or brightness) and with several noise factors (iris obstruction and reflection) when the cooperation is not expectable from the subject. Current Iris recognition system does not deal with the noise data and substantially increase their error rates in these conditions. An Iris classification method is proposed on the segmented and normalized iris image that divides the image into six regions, followed by independent feature extraction in each region. This will provide the iris signature in terms of binary values, then that are compared with each region for the identification. In addition to this Fake identification is also done in this paper. Fake, the original image is forged by fixing lenses over the iris portion. This can be identified by using fast Fourier transform

    Performances of proposed normalization algorithm for iris recognition

    Get PDF
    Iris recognition has very high recognition accuracy in comparison with many other biometric features. The iris pattern is not the same even right and left eye of the same person. It is different and unique. This paper proposes an algorithm to recognize people based on iris images. The algorithm consists of three stages. In the first stage, the segmentation process is using circular Hough transforms to find the region of interest (ROI) of given eye images. After that, a proposed normalization algorithm is to generate the polar images than to enhance the polar images using a modified Daugman’s Rubber sheet model. The last step of the proposed algorithm is to divide the enhance the polar image to be 16 divisions of the iris region. The normalized image is 16 small constant dimensions. The Gray-Level Co-occurrence Matrices (GLCM) technique calculates and extracts the normalized image’s texture feature. Here, the features extracted are contrast, correlation, energy, and homogeneity of the iris. In the last stage, a classification technique, discriminant analysis (DA), is employed for analysis of the proposed normalization algorithm. We have compared the proposed normalization algorithm to the other nine normalization algorithms. The DA technique produces an excellent classification performance with 100% accuracy. We also compare our results with previous results and find out that the proposed iris recognition algorithm is an effective system to detect and recognize person digitally, thus it can be used for security in the building, airports, and other automation in many applications

    IRIS RECOGNITION USING DISCRETE COSINE TRANSFORM AND WAVELET PACKET DECOMPOSITION

    Get PDF
    ABSTRACT Iris recognition is basic technology for personal identification and verification and is most reliable and accurate for biometric identification system. Iris recognition system gives security to the organization and Institutes from the unauthorized access . Digital templates encoded from iris pattern using mathematical and statistical algorithms allow the identification of an individual. In this paper for iris recognition, 2-D discrete cosine transformation is used for the compression of the image and wavelet packet decomposition is done, to obtain distinctive feature from an iris image and will give more effective results
    corecore