1,449 research outputs found

    EFFECTS OF NEUROMODULATION ON NEUROVASCULAR COUPLING

    Get PDF
    The communication between neurons within neural circuits relies on neurotransmitters (glutamate, Îł-aminobutyric acid (GABA)) and neuromodulators (acetylcholine, dopamine, serotonin, etc.). However, despite sharing similar molecular elements, neurotransmitters and neuromodulators are distinct classes of molecules and mediate different aspects of neural activity and metabolism. Neurotransmitters on one hand are responsible for synaptic signal transmission (classical transmission) while neuromodulators exert their functions by mediating different postsynaptic events that result in changes to the balance between excitation and inhibition. Neuromodulation, while essential to nervous system function, has been significantly more difficult to study than neurotransmission. This is principally due to the fact that effects elicited by neuromodulators are usually of slow onset, long lasting, and are not simply excitation or inhibition. In contrast to the effects of neurotransmitters, neuromodulators enable neurons to be more flexible in their ability to encode different sorts of information (e.g. sensory information) on a variety of time scales. However, it is important to appreciate that one of the challenges in the study of neuromodulation is to understand the extent to which neuromodulators’ actions are coordinated at all levels of brain function. That is, from the cellular and metabolic level to network and cognitive control. Therefore, understanding the molecules that mediate brain networks interactions is essential to understanding the brain dynamic, and also helps to put the cellular and molecular processes in perspective. Functional magnetic resonance imaging (fMRI) is a technique that allows access to various cellular and metabolic aspects of network communication that are difficult to access when studying one neuron at the time. Its non-invasiveness nature allows the comparison of data and hypotheses of the primate brain to that of the human brain. Hence, understanding the effects of neuromodulation on local microcircuits is needed. Furthermore, given the massive projections of the neuromodulatory diffuse ascending systems, fMRI combined with pharmacological and neurophysiological methods may provide true insight into their organization and dynamics. However, little is known about how to interpret the effects of neuromodulation in fMRI and neurophysiological data, for instance, how to disentangle blood oxygenation level dependent (BOLD) signal changes relating to cognitive changes (presumably neuromodulatory influences) from stimulus-driven or perceptual effects. The purpose of this dissertation is to understand the causal relationship between neural activity and hemodynamic responses under the influence of neuromodulation. To this end we present the results of six studies. In the first study, we aimed to establish a mass-spectrometry-based technique to uncover the distribution of different metabolites, neurotransmitters and neuromodulators in the macaque brain. We simultaneously measured the concentrations of these biomolecules in brain and in blood. In a second study, we developed a multimodal approach consisting of fMRI (BOLD and cerebral blood flow or CBF), electrophysiological recording with a laminar probe and pharmacology to assess the effects of neuromodulation on neurovascular coupling. We developed a pharmacological injection delivery system using pressure-operated pumps to reliably apply drugs either systemically or intracortically in the NMR scanner. In our third study, we systemically injected lactate and pyruvate to explore whether the plasma concentration of either of these metabolites affects the BOLD responses. This is important given that both metabolites are in a metabolic equilibrium; if this equilibrium is disrupted, changes in the NAD and NADH concentrations would elicit changes in the CBF. In a fourth study, we explored the influence of dopaminergic (DAergic) neuromodulation in the BOLD, CBF and neurophysiological activity. Here we found that DAergic neuromodulation dissociated the BOLD responses from the underlying neural activity. Interestingly, the changes in the neural activity were tightly coupled to the effects seen in the CBF responses. In a subsequent study, we explored whether the effects of dopamine (DA) on the electrophysiological responses are cortical layer dependent and whether specific patterns of neural activity can be used to infer the effects of neuromodulation on the neural activity. This is important, given that different types of neural activity provide independent information about the amplitude and dynamics from BOLD responses, and studies have shown that these bands originate from different cortical layers. What this study revealed, is that local field potentials (LFPs) in the midrange frequencies can indeed provide indications about the sustained effects of neuromodulation on cortical sensory processing. Given the results from the previous study, in our sixth study, we aimed at understanding how different cortical layers may process incoming and outgoing information in the different LFP bands. These findings provide evidence that neuromodulation has profound effects on neurovascular coupling. By changing the excitation-inhibition balance of neural circuits, neuromodulators not only mediate the neural activity, but also adjust the metabolic demands. Therefore, understanding how the different types of neuromodulators affect the BOLD response is essential for an effective interpretation of fMRI-data, not only in tasks involving attentional and reward-related processes, but also for future diagnostic use of fMRI, since many psychiatric disorders are the result of alterations in neuromodulatory systems.Die Kommunikation zwischen den Neuronen innerhalb neuronalen Schaltkreise beruht auf Neurotransmitter (Glutamat, Îł-AminobuttersĂ€ure (GABA)) und Neuromodulatoren (Acetylcholin, Dopamin, Serotonin, etc.). Neurotransmitter und Neuromodulatoren sind jedoch unterschiedliche Klassen von MolekĂŒlen und verschiedenen Aspekte der neuronalen AktivitĂ€t und den Stoffwechsel vermitteln. Neurotransmitters sind einerseits verantwortlich fĂŒr die synaptische SignalĂŒbertragung (klassische Übertragung), wĂ€hrend ihre Funktionen ausĂŒben, Neuromodulatoren durch verschiedene postsynaptischen Ereignisse zu vermitteln, die in Änderungen an der Balance zwischen Erregung und Hemmung fĂŒhren. Neuromodulation , wĂ€hrend wesentlich Funktion des Nervensystems hat sich als Neurotransmission wesentlich schwieriger gewesen, zu studieren. Dies ist hauptsĂ€chlich auf die Tatsache zurĂŒckzufĂŒhren, die durch Neuromodulatoren sind in der Regel von langsamen Beginn, langlebig, und sind nicht einfach Anregung oder Hemmung ausgelöst beeinflusst. Im Gegensatz zu den Wirkungen von Neurotransmittern, Neuromodulatoren ermöglichen Neuronen flexibler zu sein in ihrer FĂ€higkeit, verschiedene Arten von Informationen (beispielsweise sensorische Informationen) auf einer Vielzahl von Zeitskalen zu kodieren. Im Gegensatz zu den Wirkungen von Neurotransmittern, Neuromodulatoren ermöglichen Neuronen flexibler zu sein in ihrer FĂ€higkeit, verschiedene Arten von Informationen (beispielsweise sensorische Informationen) auf einer Vielzahl von Zeitskalen zu kodieren. Im Gegensatz zu den Wirkungen von Neurotransmittern, Neuromodulatoren ermöglichen Neuronen flexibler zu sein in ihrer FĂ€higkeit, verschiedene Arten von Informationen (beispielsweise sensorische Informationen) auf einer Vielzahl von Zeitskalen zu kodieren. Jedoch ist es wichtig, dass eine der Herausforderungen bei der Untersuchung von Neuromodulations zu schĂ€tzen ist, das Ausmaß, in dem Neuromodulatoren Aktionen koordiniert sind auf allen Ebenen der Gehirnfunktion zu verstehen. Das heißt, von der zellulĂ€ren und metabolischen Ebene zu vernetzen und kognitive Kontrolle. Daher die MolekĂŒle zu verstehen, die Gehirn Netzwerke Interaktionen vermitteln ist wesentlich fĂŒr das VerstĂ€ndnis des Gehirns dynamisch, und hilft auch, die zellulĂ€ren und molekularen Prozesse in Perspektive zu setzen. Funktionellen Kernspintomographie (fMRI) ist eine Technik, die Zugang zu verschiedenen zellulĂ€ren und metabolischen Aspekte der Netzwerk-Kommunikation ermöglicht, die schwer zugĂ€nglich sind, wenn zu der Zeit eines Neurons zu studieren. Seine nicht-InvasivitĂ€t Natur ermöglicht den Vergleich von Daten und Hypothesen des Primatengehirn zu der des menschlichen Gehirns. Somit wurde das VerstĂ€ndnis der Auswirkungen der Neuromodulation auf lokale Mikro benötigt. DarĂŒber hinaus sind die massiven Projektionen der neuromodulatorischen diffuse Aufstiegsanlagen gegeben, kombiniert fMRI mit pharmakologischen und neurophysiologischen Methoden wahren Einblick in ihre Organisation und Dynamik liefern. Allerdings ist nur wenig darĂŒber bekannt, wie die Auswirkungen der Neuromodulations in fMRI und neurophysiologische Daten zu interpretieren, zum Beispiel, wie Blutoxydation pegelabhĂ€ngig (BOLD) SignalĂ€nderungen in Bezug auf kognitive VerĂ€nderungen (vermutlich neuromodulatorischen EinflĂŒsse) von Stimulus-driven oder Wahrnehmungseffekte zu entwirren. Der Zweck dieser Arbeit ist es, die kausale Beziehung zwischen neuronaler AktivitĂ€t und hĂ€modynamischen Reaktionen unter dem Einfluss der Neuromodulations zu verstehen. Zu diesem Zweck stellen wir die Ergebnisse von sechs Studien. In der ersten Studie wollten wir eine auf Massenspektrometrie basierende Technik einzurichten, um die Verteilung von verschiedenen Metaboliten, Neurotransmittern und Neuromodulatoren in Makakengehirn aufzudeckenWir maßen gleichzeitig die Konzentrationen dieser BiomolekĂŒle im Gehirn und im Blut. In einer zweiten Studie entwickelten wir einen multimodalen Ansatz, bestehend aus fMRI (BOLD und zerebralen Blutflusses oder CBF), elektrophysiologische Aufzeichnung mit einer laminaren Sonde und Pharmakologie, die Auswirkungen der Neuromodulation auf neurovaskulĂ€ren Kopplung zu beurteilen. Wir entwickelten eine pharmakologische Injektionsverabreichungssystem druckbetriebenen Pumpen mit zuverlĂ€ssiger Medikamente gelten entweder systemisch oder intrakortikale im NMR-Scanner. In unserer dritten Studie injizierten wir systemisch Laktat und Pyruvat zu untersuchen, ob die Plasmakonzentration von entweder dieser Metaboliten die BOLD-Antworten beeinflusst. Dies ist wichtig, dass beide gegeben Metaboliten in einem Stoffwechselgleichgewicht sind; wenn dieses Gleichgewicht gestört ist, VerĂ€nderungen in den NAD und NADH-Konzentrationen wĂŒrden VerĂ€nderungen in der CBF entlocken. In einer vierten Studie untersuchten wir den Einfluss von dopaminergen (DA-erge) -Neuromodulation im BOLD, CBF und neurophysiologische AktivitĂ€t. Hier fanden wir, dass DAerge -Neuromodulation die BOLD-Antworten von der zugrunde liegenden neuronalen AktivitĂ€t distanzierte. Interessanterweise waren verbunden, um die VerĂ€nderungen in der neuronalen AktivitĂ€t eng auf die in den CBF Reaktionen gesehen Wirkungen. In einer nachfolgenden Studie untersuchten wir, ob die Wirkungen von Dopamin (DA) auf die elektrophysiologischen Reaktionen sind Rindenschicht abhĂ€ngig, und ob bestimmte Muster der neuronalen AktivitĂ€t verwendet werden kann, die Wirkungen von Neuromodulations auf die neurale AktivitĂ€t zu schließen. Dies ist wichtig, da verschiedene Arten von neuralen AktivitĂ€t liefern unabhĂ€ngige Informationen ĂŒber die Amplitude und die Dynamik von BOLD-Antworten, und Studien haben gezeigt, dass diese Bands aus verschiedenen kortikalen Schichten stammen. Was diese Studie ergab, dass lokale Feldpotentiale (LFP) in den mittleren Frequenzen in der Tat Hinweise ĂŒber die nachhaltige Wirkung der Neuromodulation auf die kortikale sensorische Verarbeitung zur VerfĂŒgung stellen kann. In Anbetracht der Ergebnisse der frĂŒheren Studie, in unserer sechsten Studie wollten wir auf das VerstĂ€ndnis, wie die verschiedenen kortikalen Schichten verarbeiten kann ein- und ausgehenden Informationen in den verschiedenen LFP-Bands. Diese Ergebnisse belegen, dass -Neuromodulation profunde Auswirkungen auf die neurovaskulĂ€ren Kopplung hat. Durch die VerĂ€nderung der Erregungs Hemmung Gleichgewicht neuronaler Schaltkreise vermitteln Neuromodulatoren nicht nur die neurale AktivitĂ€t, sondern auch die metabolischen Anforderungen anzupassen. Daher verstehen, wie die verschiedenen Arten von Neuromodulatoren beeinflussen die BOLD-Antwort fĂŒr eine effektive Interpretation von fMRI-Daten notwendig ist, nicht nur in Aufgaben attentional und Belohnung bezogenen Prozessen mit, sondern auch fĂŒr zukĂŒnftige diagnostische Verwendung von fMRI, da viele psychiatrische Störungen sind das Ergebnis von VerĂ€nderungen in neuromodulatorischen Systemen.La comunicaciĂłn de las neuronas en los circuitos neuronales depende de los neurotransmisores (glutamato, acido Îł-amino-butĂ­rico o GABA) y los neuromoduladores (acetilcolina, dopamina, serotonina, etc.). Sin embargo, tanto neurotransmisores como neuromoduladores son diferentes clases de molĂ©culas y median diferentes aspectos de la actividad neuronal y del metabolismo, a pesar de compartir elementos moleculares muy similares. Los neurotransmisores, por una lado, son responsables de la transmisiĂłn sinĂĄptica de la informaciĂłn mientras que los neuromoduladores median diferentes eventos pos-sinĂĄpticos que resultan en cambios en el balance de la excitaciĂłn e inhibiciĂłn. La influencia de la neuromodulaciĂłn es esencial para la funciĂłn del sistema nerviosos, sin embargo es mĂĄs difĂ­cil de estudiar que neurotransmisiĂłn. Esto se debe a que los efectos de los neuromoduladores suelen ser de un inicio lento, de larga duraciĂłn, y no reflejan excitaciĂłn o inhibiciĂłn. En contraste a los efectos de los neurotransmisores, los neuromoduladores permiten que las neuronas sean mĂĄs flexibles en su habilidad de codificar diferentes tipos de informaciĂłn (por ejemplo, informaciĂłn sensorial) en varias escalas temporales. Sin embargo, es importante darse cuenta que uno de objetivos primordiales en el estudio de neuromodulaciĂłn es el de entender el grado en que la acciĂłn de los neuromoduladores estĂĄ coordinada a todos los niveles de la funciĂłn cerebral. Es decir, desde los aspectos celulares y metabĂłlicos hasta los niveles de redes neuronales y control cognitivo. Por lo tanto, comprender los forma en la que diferentes molĂ©culas median la interacciĂłn entre redes neuronal es esencial para el entendimiento de la dinĂĄmica cerebral, y tambiĂ©n nos ayudara a comprender los procesos celulares y moleculares asociados a la percepciĂłn. La resonancia magnĂ©tica funcional (fMRI, por sus siglas en inglĂ©s) es una tĂ©cnica que permite acceder a varios aspectos celulares y metabĂłlicos de la comunicaciĂłn entre redes neuronales que suele ser de difĂ­cil acceso. Al mismo tiempo y debido que la fMRI es de naturaleza no invasiva, tambiĂ©n permite comparar resultados e hipĂłtesis entre humanos y primates. Por lo tanto, entender los efectos de la neuromodulaciĂłn en la actividad de los circuitos neuronales es de alta relevancia. Dado que las proyecciones anatĂłmicas de los sistemas de neuromoduladores, el uso de fMRI en combinaciĂłn con farmacologĂ­a y neurofisiologĂ­a puede incrementar nuestro conocimiento sobre la estructura y dinĂĄmica de los sistemas de neuromoduladores. Sin embargo, poco se sabe sobre cĂłmo interpretar los efectos de neuromodulation usando fMRI y neurofisiologĂ­a, por ejemplo, como diferenciar los cambios en la señal BOLD que estĂĄn relacionados a diferentes estados cognitivos (presumiblemente reflejando la influencia de neuromodulation). El propĂłsito de esta disertaciĂłn es la de comprender la relaciĂłn causal que existe entre la actividad neural y la respuesta hemodinĂĄmica bajo la influencia de neuromodulaciĂłn. Para tal fin presentamos los resultados de seis estudios que fueron producto de esta disertacion. En el primer estudio, desarrollamos una tĂ©cnica basada en espectrometrĂ­a de masa para detectar y medir la concentraciĂłn de diferente metabolitos, neurotransmisores y neuromoduladores en el cerebro de primates. Dicha cuantificaciĂłn se desarrollo simultĂĄneamente tanto in sangre y cerebro. En un segundo estudio, utilizamos varias tĂ©cnicas de fMRI (BOLD y flujo cerebral sanguĂ­neo, CBF por sus siglas en ingles), registros electrofisiolĂłgicos con electrodos laminares y farmacologĂ­a para acceder a los efectos de neuromodulation en el acople neurovascular. Para este fin, desarrollamos un sistema de inyecciones, basada en cambios de presiĂłn, para aplicar substancias sistĂ©micamente o intracorticalmente dentro de un escĂĄner de resonancia magnĂ©tica. En nuestro tercer estudio, comparamos los efectos de lactato y piruvato para explorar como el desequilibrio metabĂłlico de estas dos substancias afecta la respuesta BOLD. Esto es de gran importancia ya que ambas substancias metabĂłlicas usualmente estĂĄn en equilibrio. Sin embargo, cuando dicho equilibrio es interrumpido, los procesos metabĂłlicos que acontecen en la mitocondria afectan las concentraciones de NAD y NADH causado cambios en el CBF. En un cuarto estudio, exploramos los efectos de las modulaciĂłn dopaminergica (DAergic) en las señales BOLD, CBF y en la actividad neuronal. Encontramos que la modulaciĂłn DAergic disocia las respuesta BOLD de la respuesta neuronal. Interesalmente, los cambios que observamos en la actividad de las neuronas estaba altamente acoplados a los efectos que observamos en la señal de CBF. En un estudio subsecuente, exploramos si los efectos de dopamina en la actividad neuronal es diferentes en las distintas capas de la corteza cerebral. Al mismo tiempo y ya que los neuromoduladores afectan la actividad de circuitos neuronales, exploramos si dichos efectos pueden usados como marcadores de la influencia de la neuromodulaciĂłn . Esto es importante, ya que diferentes tipos de actividad neuronal brinda informaciĂłn sobre la amplitud y dinĂĄmica de la repuesta BOLD, y estudies han demostrado que estas bandas se originan de diferentes capas cortical. Este estudio revelo, que los potenciales de capo (LFPs, por sus siglas en ingles) en frecuencias intermedias puede ser indicativos sobre los efectos de neuromodulation en el procesamiento cortical. Dado los resultados en el estudio previo, en un sexto estudio, nos enfocamos a entender que tan diferentes las capas de la corteza procesan informaciĂłn entrante y saliente en diferentes frecuencias de los LFPs. Estos descubrimientos demuestran que los efectos de los neuromoduladores tiene una fuerte influencia en el acople neurovascular. Los neuromoduladores cambian el balance de excitaciĂłn e inhibiciĂłn de los circuitos neuronal, pero tambiĂ©n median las demandas metabĂłlicas. De esta manera, entender cĂłmo interpretar los efectos de los neuromoduladores en la respuesta BOLD es esencial para una interpretaciĂłn veraz y efectiva de los datos generados con fMRI. Estos resultados, no solo nos permiten comprender los procesos que estĂĄn relacionados a la atenciĂłn o de varios procesos cognitivos, sino que a su vez, nos permite comprender la señal de fMRI para su futuro uso en la medicina diagnostica, ya que muchas enfermedades psiquiĂĄtricas estĂĄn asociadas a trastornos en el sistemas neuromoduladores

    The waking brain: an update

    Get PDF
    Wakefulness and consciousness depend on perturbation of the cortical soliloquy. Ascending activation of the cerebral cortex is characteristic for both waking and paradoxical (REM) sleep. These evolutionary conserved activating systems build a network in the brainstem, midbrain, and diencephalon that contains the neurotransmitters and neuromodulators glutamate, histamine, acetylcholine, the catecholamines, serotonin, and some neuropeptides orchestrating the different behavioral states. Inhibition of these waking systems by GABAergic neurons allows sleep. Over the past decades, a prominent role became evident for the histaminergic and the orexinergic neurons as a hypothalamic waking center

    Characterization of buspirone effect on output basal ganglia nuclei in 6-hydroxydopamine lesioned rats with and without long-term levodopa treatment.

    Get PDF
    221 p.La enfermad de PĂĄrkinson es un trastorno neurodegenerativo en el que varios sistemas de neurotransmisiĂłn se ven afectados. En los Ășltimos años, numerosas evidencias clĂ­nicas y experimentales han demostrado el papel del sistema serotonĂ©rgico en el desarrollo y en los sĂ­ntomas de esta enfermedad asĂ­ como en las complicaciones motoras derivadas del tratamiento crĂłnico con levodopa, conocidas como discinesias inducidas por levodopa. El objetivo de esta tesis ha sido caracterizar el efecto de la buspirona, un agonista parcial de los receptores serotoninĂ©rgicos 5-HT1A, en los principales nĂșcleos de salida de los ganglios basales, la substantia nigra pars reticulata (SNr) y el nĂșcleo entopeduncular (EP) mediante tĂ©cnicas electrofisiolĂłgicas in vivo, un estudio histoquĂ­mico para la actividad del citocromo c oxidasa (COX) y estudios inmunohistoquĂ­micos para el receptor 5-HT1A y el transportador de la serotonina (SERT), que fueron realizados en los ganglios basales y el nĂșcleo dorsal del rafe. En este trabajo se ha demostrado que el efecto de la buspirona y el agonista total 5-HT1A, 8-OH-DPAT, sobre la actividad de la SNr y el EP se ve comprometido tras el dĂ©ficit dopaminĂ©rgico, y estĂĄ prĂĄcticamente ausente en la actividad oscilatoria entre estos nĂșcleos y la corteza motora. Sin embargo, estos fĂĄrmacos pueden normalizar la descarga en ÂżburstÂż durante el parkinsonismo. AdemĂĄs, se ha observado un aumento generalizado de la actividad de la COX junto con cambios en la expresiĂłn del receptor 5-HT1A y del SERT en las ratas parkinsonianas tratadas o sin tratar con levodopa. Estos resultados sugieren que la actividad ÂżburstÂż en modelos experimentales es importante para estudiar el efecto terapĂ©utico de nuevos fĂĄrmacos antiparkinsonianos y antidiscinĂ©ticos

    Generation and modulation of network oscillations on the rodent prefrontal cortex in vitro

    Get PDF
    PhD ThesisFast network oscillations (~12-80 Hz) are recorded extensively in the mammalian cerebral cortex in vivo which local and distant neuronal populations orchestrate their firing activity to process cognitive-related information. The rat medial prefrontal cortex (mPFC) is considered to be functionally and anatomically homologous to the primate in vitro studies have demonstrated that the mPFC can sustain carbachol-induced persistent beta1 or kainate-induced transient low gamma frequency oscillations. We wished to establish an in vitro paradigm of carbachol (10 ÎŒM) / kainate (200 objective to investigate the distribution patterns and the mechanisms of these oscillations. Then we assessed the modulatory effects of the ascending catecholamine systems on fast network oscillations with exogenous application of Persistent fast network oscillations in the ventral mPFC were stronger, more rhythmic but slower (~25 Hz) than oscillations in the dorsal mPFC (~28 Hz). The regional difference in the oscillation amplitude was correlated to the strong regions in the mPFC, oscillations were stronger in layer 5. Oscillations relied on GABA, kainate but not AMPA receptors. In the ventral mPFC, network oscillations A were also dependent on NMDA receptor-mediated synaptic transmission. ÎŒM) reduced the oscillation strength and rhythmicity in the ventral mPFC. Instead, dopamine increased the power and rhythmicity of network oscillations in the dorsal mPFC. The region-dependent dopamine effect was correlated to the induced effects on synaptic inhibition and neuronal firing. ÎŒM) reduced the osc caused no effect on the dorsal mPFC

    GABA signaling in the thalamus

    Get PDF
    Inhibition of neuronal activity in networks of the mammalian central nervous system is essential for all fundamental brain functions, ranging from perception, to consciousness, to action. Both exacerbation and diminution of inhibition dramatically affect our behavioral capacities, indicating that, in the healthy brain, strength and dynamics of inhibition must be precisely balanced. Inhibitory functions are primarily accomplished by neurons releasing the neurotransmitter GABA. According to their wide variety of functions, GABAergic neurons show a tremendous diversity in morphological, biochemical and functional characteristics. The combination of these diverse properties allows the brain to generate interneurons acting as, for examples, filters, co-incidence detectors or contrast enhancers. GABAergic signaling in thalamus plays an essential role in controlling sensory information flow from the periphery to the cortical processing centers, and in generating sleep-related neuronal rhythms. Surprisingly, however, the diversity of GABAergic neurons is remarkably limited in thalamic networks. Both functions mentioned have been tightly associated with two homogeneous groups of GABAergic neurons arising within thalamic nuclei or within the nucleus reticularis, a shell of inhibitory nuclei surrounding the dorsal thalamus. The results arising from the present thesis challenge the view that the diversity of GABAergic signaling in thalamus is comparatively limited and proposes that, to fully understand GABAergic signaling in thalamus, at least two additional aspects have to be considered. First, it shows that GABAergic signaling arising from the nucleus reticularis can have a profound effect on the synthesis of second messenger compounds that are important in the control of neuronal rhythmicities and in the statedependent control of gene expression. Second, it demonstrates the functional relevance of a previously undescribed extrathalamic and extrareticular inhibitory pathway that arises within the anterior pretectal nuclei, indicating that the architecture of GABAergic signaling in thalamus has to be complemented by a conceptually novel, powerful afferent pathway. The first part investigates the modulation of cAMP synthesis by GABA in thalamocortical neurons through the activation of the Gi-coupled GABAB receptors. GABAB receptors can provide two different cAMP signals in the neurons. First, GABAB receptor activation depresses the level of cAMP inside thalamocortical neurons. However, a large and long cAMP signal is observed when GABAB receptors are activated concomitantly with b-adrenergic receptors, which are Gscoupled receptors. In the presence of GABAB receptor agonists, the moderate cAMP increase produced by b-adrenergic receptor activation is transformed into a large synthesis of cAMP. Remarkably, the activation of the GABAB receptors at the synapses between reticular neurons and thalamocortical neurons also potentiates the effects of b-adrenergic receptors. Thus, GABAB receptors modulate cAMP signals at synapses that are important for the regulation of the state of arousal. The second part provides the first electrophysiological description of synaptic connections between the anterior pretectum group and the thalamic higher-order nuclei. Electric stimulation in the anterior pretectum group evoked inhibitory postsynaptic responses (IPS) in the thalamocortical neurons of the higher-order nuclei. We showed that the IPS responses were mediated via the GABAA receptors activated through monosynaptic connections between the APT and the higher-order nuclei. Functionally, the anterior pretectum modulated the discharge properties of the thalamocortical neurons, suggesting an important role of this nucleus in the dialogue between the thalamus and the cortex

    Neurophysiology of the subthalamic nucleus

    Get PDF
    Possibly as many as half the neurones in the STN have axon collaterals that branch off from the main axon and re-innervate the nucleus. This suggests that rather than working autonomously as was previously thought, the neurones of the STN can operate together as a network. Computer models of the STN showed that the level of interconnectivity within the STN would be huge, even if each axon collateral only contacted a small number of the total neurones with dendritic fields that overlapped with it. A network model showed that such a system was capable of switch-like behaviour. At low levels of activity the neurones would act autonomously. However, excitatory inputs could increase the degree of non-synchronous correlation between the activity of neurones in the STN leading them all to enter a high activity state. A single cell model was then developed in order to look at how this high activity state could be terminated. An interesting problem arose in the construction of this model; no known kinetics for the voltage-gated sodium and potassium channels could replicate the high frequency (500Hz) firing rates that are obtained by STN neuronesIntracellular recordings were made in vitro to investigate the mechanisms underlying high-frequency firing in the STN. Using a two-pulse protocol the speed of recovery from inactivation was measured giving an estimate of the inactivation characteristics of the ion channels in these neurones. These experiments showed that the neurones have very slow inactivation kinetics suggesting that STN neurones may have a much shortened refractory period, enabling high frequency firing. Such a mode of operation requires a large, fast potassium current. A potential candidate for this current is the Kv3.1 potassium channel, which is strongly expressed by STN neurones.Extracellular recordings were used to look for evidence of functional interconnections between cells within the STN. These experiments showed that blocking any interconnections with a glutamatergic antagonist had no effect on the resting firing pattern or rate of STN neurones. However, when the neurones were depolarised using increased levels of potassium in the perfusing solution, the normally regular firing pattern of the neurones was disrupted and became irregular. The glutamatergic antagonist attenuated this disruption showing that it was at least partially mediated through glutamatergic synapses, the best candidate for which are those at the interconnections between the STN neurones.Having investigated high frequency firing in the STN, and how such increased levels of activity could influence co-ordinated firing within the STN, the effects of one of the STNs targets was assessed. Lesions of the globus pallidus have been shown to create a chronic increase in the levels of STN activity in vivo. At three and six weeks after such lesions a marked reduction was found in the number of neurones in the substantia nigra that stained positive for tyrosine hydroxylase (marking them as dopaminergic cells). These data provide evidence supporting the excitotoxic hypothesis for the progressive loss of dopaminergic cells that is seen in Parkinson's Disease

    The action of antiepileptic and other drugs on Na- and Ca-spikes in mammalian non-myelinated nerves

    Get PDF
    The effects of some antiepileptic and local anaesthetic drugs on sodium- and calcium-dependent compound action potentials (Na- and Ca-spikes) in mammalian non-myelinated nerves have been compared, using the rat preganglionic cervical sympathetic trunk in vitro as the test system. To record the Ca-spike, the normal Na-spike was blocked by tetrodotoxin (TTX) and 1 mM 4-aminopyridine (4-AP) added. The spikes were maintained on substituting Sr2+ or Ba2+ for Ca2+ but were blocked by inorganic Ca channel antagonists, with the following order of potency (IC50): Cd2+ (3.3 uM) > La3+ (6.9 uM) > Ni2+ (44 uM) > Co2+ (0.47 mM) > Mn2+ (0.71 mM) > Mg2+ (16.4 mM). A comparison of the local anaesthetics, lidocaine and procaine with the antiepileptics phenytoin, carbamazepine and phenobarbitone on the Na-spike was made over a range of stimulation frequencies (0.2-20Hz). There was no discernible difference in the frequency-dependence of block between these two groups of drugs. Differences were revealed in their relative effectiveness on single Na- and Ca-spikes. The antiepileptics were more potent blockers of the Ca-spike (ratio of IC50s °f the Na- and Ca-spikes: pentobarbitone, 21; phenobarbitone, 5.0; carbamazepine, 3.2; and phenytoin, 1.2), whereas the local anaesthetics were more potent on the Na-spike (lidocaine, 0.23; and procaine, 0.29). Catecholamines were also tested on the Ca-spike. L-noradrenaline produced an average maximal depression of the Ca-spike of 90% (IC50 1.5 uM). Potencies (IC50) of other agonists were: clonidine (0.44 uM), L-adrenaline (1.3 uM), dopamine (46 uM), L-phenylephrine (154 uM), +/-amidephrine (>10 mM). Phentolamine was the most potent antagonist tested (Schild plot analysis giving a pA2 of 6.5). Yohimbine was at least ten times weaker; prazosin (10 uM) and +/-propranolol (1 uM) had no antagonistic action. In conclusion, it is proposed that inhibition of calcium currents may contribute to the therapeutic efficacy of some antiepileptic drugs and to the inhibitory action of catecholamines on transmitter release

    Mechanisms Of Dopaminergic, Histaminergic, And Glutamatergic Neuromodulation Within The Medial Entorhinal Cortex

    Get PDF
    The medial entorhinal cortex (MEC) is a critical region for both limbic functions as well as learning and memory. In addition to these normal processes, the MEC is also implicated in several disorders including epilepsy, Alzheimer’s disease, and several neuropsychiatric disorders. The MEC’s function and role in various disorders is intimately related to its underlying cellular activity. The primary neuronal cell types in this region consist of glutamatergic principle cells and GABAergic local inhibitory interneurons. This dissertation consists of three aims related to the neuromodulation of these cells located in the superficial layers of the MEC—the primary input source to the hippocampus. The first aim addresses how dopamine (DA) alters GABAergic transmission. The second aim also considers GABAergic transmission but examines its modulation by histamine (HA). Finally, the third aim investigates mechanisms of group I metabotropic glutamate receptor(mGluR)-induced increases in layer III principal cell excitability. For Study 1, exogenous application of DA increases spontaneous inhibitory postsynaptic currents (sIPSCs) recorded from layer II neurons. This increase is mediated by a promiscuous interaction with the α1 adrenergic receptors (α1 ARs) found on the MEC interneurons. Application of amphetamine to elevate extracellular DA concentrations mimic theses effects in an α1 AR-dependent fashion. Activation of interneuron α1 AR-induced depolarization is mediated by inhibition of inwardly rectifying K+ channels (Kirs). For Study 2, exogenous application of HA increases sIPSCs recorded from layer II principal neurons. This increase requires both H1 and H2 receptors located on GABAergic interneurons. The magnitude of HA-induced depolarization is significantly larger within one class of tested interneurons and HA-induced depolarization of interneurons involves both the inhibition of (Kirs) and activation of a TTX-insensitive Na+ current. For Study 3, activation of group I mGluRs increases action potential firing, depolarization and generation of inward currents in layer III pyramidal neurons. This increase is sensitive to antagonists for both mGluR1 and mGluR5, indicating the functional presence of both receptors. The mGluR-induced currents are mediated by a non-selective cation channel that contains TRPC4 and TRPC5 subunits

    Role of cholinergic receptors in prefrontal activity of nonhuman primates during an oculomotor rule-based working memory task

    Get PDF
    The ability to flexibly react to our dynamic environment is a cardinal component of cognition and our human identity. Millions across the globe are affected by disorders of cognition, affecting their ability to live independently. Prefrontal cortex is required for optimal cognitive functioning, but its circuitry is often disrupted in conditions of impaired cognition. In addition, the cholinergic system is vital to optimal executive function, but this is disrupted in a number of conditions, including Alzheimer’s disease and schizophrenia. The actions of cholinergic receptors were explored in this project with local application of cholinergic compounds onto prefrontal neurons as rhesus monkeys performed a rule-based saccadic task that requires working memory maintenance. The antisaccade task is a useful probe of prefrontal cortex function that elicits errors in neuropsychiatric conditions. Some prefrontal neurons respond to different task aspects of the antisaccade task, e.g., discharging preferentially for one task rule over the other (pro- or antisaccades), and are thought to be involved in the circuitry for correct behavioural responses. Chapter 2 explored the effect of general stimulation of cholinergic receptors on rhesus PFC neuronal activity during antisaccade performance. In Chapter 3, newly developed cholinergic receptor subtype-specific compounds were utilized to examine the actions of muscarinic M1 receptor stimulation on prefrontal activity. Cortical oscillations are emerging as an important aspect of cognitive circuitry, such as during working memory maintenance. Chapter 4 examined the influence of local cholinergic receptor stimulation and blockade on the power of local field potential in different frequency bands. This project characterized the role of cholinergic receptors in prefrontal cortical neurons that were actively involved in cognitive circuitry. This and future work on the cholinergic influence on prefrontal cortex will provide insights into the altered cognitive functioning in Alzheimer’s disease and schizophrenia, which are also affected by disrupted cholinergic systems
    • 

    corecore