4 research outputs found

    Stability analysis of a parametric family of seventh-order iterative methods for solving nonlinear systems

    Full text link
    [EN] In this paper, a parametric family of seventh-order of iterative method to solve systems of nonlinear equations is presented. Its local convergence is studied and quadratic polynomials are used to investigate its dynamical behavior. The study of the fixed and critical points of the rational function associated to this class allows us to obtain regions of the complex plane where the method is stable. By depicting parameter planes and dynamical planes we obtain complementary information of the analytical results. These results are used to solve some nonlinear problems. (C) 2017 Elsevier Inc. All rights reserved.This research was partially supported by Ministerio de Economia y Competitividad MTM2014-52016-C2-2-P and by Generalitat Valenciana PROMETEO/2016/089.Amiri, A.; Cordero Barbero, A.; Darvishi, M.; Torregrosa Sánchez, JR. (2018). Stability analysis of a parametric family of seventh-order iterative methods for solving nonlinear systems. Applied Mathematics and Computation. 323:43-57. https://doi.org/10.1016/j.amc.2017.11.040S435732

    Local convergence and the dynamics of a two-point four parameter Jarratt-like method under weak conditions

    No full text
    We present a local convergence analysis of a two-point four parameter Jarratt-like method of high convergence order in order to approximate a locally unique solution of a nonlinear equation. In contrast to earlier studies such us (Amat et al. Aequat. Math. 69(3), 212–223 2015; Amat et al. J. Math. Anal. Appl. 366(3), 24–32 2010; Behl, R. 2013; Bruns and Bailey Chem. Eng. Sci. 32, 257–264 1977; Candela and Marquina. Computing 44, 169–184 1990; Candela and Marquina. Computing 45(4), 355–367 1990; Chun. Appl. Math. Comput. 190(2), 1432–1437 2007; Cordero and Torregrosa. Appl. Math. Comput. 190, 686–698 2007; Deghan. Comput. Appl Math. 29(1), 19–30 2010; Deghan. Comput. Math. Math. Phys. 51(4), 513–519 2011; Deghan and Masoud. Eng. Comput. 29(4), 356–365 15; Cordero and Torregrosa. Appl. Math. Comput. 190, 686–698 2012; Deghan and Masoud. Eng. Comput. 29(4), 356–365 2012; Ezquerro and Hernández. Appl. Math. Optim. 41(2), 227–236 2000; Ezquerro and Hernández. BIT Numer. Math. 49, 325–342 2009; Ezquerro and Hernández. J. Math. Anal. Appl. 303, 591–601 2005; Gutiérrez and Hernández. Comput. Math. Appl. 36(7), 1–8 1998; Ganesh and Joshi. IMA J. Numer. Anal. 11, 21–31 1991; González-Crespo et al. Expert Syst. Appl. 40(18), 7381–7390 2013; Hernández. Comput. Math. Appl. 41(3-4), 433–455 2001; Hernández and Salanova. Southwest J. Pure Appl. Math. 1, 29–40 1999; Jarratt. Math. Comput. 20(95), 434–437 1966; Kou and Li. Appl. Math. Comput. 189, 1816–1821 2007; Kou and Wang. Numer. Algor. 60, 369–390 2012; Lorenzo et al. Int. J. Interact. Multimed. Artif. Intell. 1(3), 60–66 2010; Magreñán. Appl. Math. Comput. 233, 29–38 2014; Magreñán. Appl. Math. Comput. 248, 215–224 2014; Parhi and Gupta. J. Comput. Appl. Math. 206(2), 873–887 2007; Rall 1979; Ren et al. Numer. Algor. 52(4), 585–603 2009; Rheinboldt Pol. Acad. Sci. Banach Ctr. Publ. 3, 129–142 1978; Sicilia et al. J. Comput. Appl. Math. 291, 468–477 2016; Traub 1964; Wang et al. Numer. Algor. 57, 441–456 2011) using hypotheses up to the fifth derivative, our sufficient convergence conditions involve only hypotheses on the first Fréchet-derivative of the operator involved. The dynamics of the family for choices of the parameters such that it is optimal is also shown. Numerical examples are also provided in this stud

    Stability analysis of a family of optimal fourth-order methods for multiple roots

    Full text link
    [EN] Complex dynamics tools applied on the rational functions resulting from a parametric family of roots solvers for nonlinear equations provide very useful results that have been stated in the last years. These qualitative properties allow the user to select the most efficient members from the family of iterative schemes, in terms of stability and wideness of the sets of convergent initial guesses. These tools have been widely used in the case of iterative procedures for finding simple roots and only recently are being applied on the case of multiplicity m >1. In this paper, by using weight function procedure, we design a general class of iterative methods for calculating multiple roots that includes some known methods. In this class, conditions on the weight function are not very restrictive, so a large number of different subfamilies can be generated, all of them are optimal with fourth-order of convergence. Their dynamical analysis gives us enough information to select those with better properties and test them on different numerical experiments, showing their numerical properties.This research was partially supported by Ministerio de Economia y Competitividad MTM2014-52016-C2-2-P, Generalitat Valenciana PROMETEO/2016/089 and Schlumberger Foundation-Faculty for Future Program.Zafar, F.; Cordero Barbero, A.; Torregrosa Sánchez, JR. (2019). Stability analysis of a family of optimal fourth-order methods for multiple roots. Numerical Algorithms. 81(3):947-981. https://doi.org/10.1007/s11075-018-0577-0S94798181
    corecore