2,955 research outputs found

    Local Controllability of the Two-Link Magneto-Elastic Micro-Swimmer

    Get PDF
    A recent promising technique for robotic micro-swimmers is to endow them with a magnetization and apply an external magnetic field to provoke their deformation. In this note we consider a simple planar micro-swimmer model made of two magnetized segments connected by an elastic joint, controlled via a magnetic field. After recalling the analytical model, we establish a local controllability result around the straight position of the swimmer

    Swim-like motion of bodies immersed in an ideal fluid

    Get PDF
    The connection between swimming and control theory is attracting increasing attention in the recent literature. Starting from an idea of Alberto Bressan [A. Bressan, Discrete Contin. Dyn. Syst. 20 (2008) 1\u201335]. we study the system of a planar body whose position and shape are described by a finite number of parameters, and is immersed in a 2-dimensional ideal and incompressible fluid in terms of gauge field on the space of shapes. We focus on a class of deformations measure preserving which are diffeomeorphisms whose existence is ensured by the Riemann Mapping Theorem. After making the first order expansion for small deformations, we face a crucial problem: the presence of possible non vanishing initial impulse. If the body starts with zero initial impulse we recover the results present in literature (Marsden, Munnier and oths). If instead the body starts with an initial impulse different from zero, the swimmer can self-propel in almost any direction if it can undergo shape changes without any bound on their velocity. This interesting observation, together with the analysis of the controllability of this system, seems innovative. Mathematics Subject Classification. 74F10, 74L15, 76B99, 76Z10. Received June 14, 2016. Accepted March 18, 2017. 1. Introduction In this work we are interested in studying the self-propulsion of a deformable body in a fluid. This kind of systems is attracting an increasing interest in recent literature. Many authors focus on two different type of fluids. Some of them consider swimming at micro scale in a Stokes fluid [2,4\u20136,27,35,40], because in this regime the inertial terms can be neglected and the hydrodynamic equations are linear. Others are interested in bodies immersed in an ideal incompressible fluid [8,18,23,30,33] and also in this case the hydrodynamic equations turn out to be linear. We deal with the last case, in particular we study a deformable body -typically a swimmer or a fish- immersed in an ideal and irrotational fluid. This special case has an interesting geometric nature and there is an attractive mathematical framework for it. We exploit this intrinsically geometrical structure of the problem inspired by [32,39,40], in which they interpret the system in terms of gauge field on the space of shapes. The choice of taking into account the inertia can apparently lead to a more complex system, but neglecting the viscosity the hydrodynamic equations are still linear, and this fact makes the system more manageable. The same fluid regime and existence of solutions of these hydrodynamic equations has been studied in [18] regarding the motion of rigid bodies

    Optimal Strokes for Driftless Swimmers: A General Geometric Approach

    Get PDF
    Swimming consists by definition in propelling through a fluid by means of bodily movements. Thus, from a mathematical point of view, swimming turns into a control problem for which the controls are the deformations of the swimmer. The aim of this paper is to present a unified geometric approach for the optimization of the body deformations of so-called driftless swimmers. The class of driftless swimmers includes, among other, swimmers in a 3D Stokes flow (case of micro-swimmers in viscous fluids) or swimmers in a 2D or 3D potential flow. A general framework is introduced, allowing the complete analysis of five usual nonlinear optimization problems to be carried out. The results are illustrated with examples coming from the literature and with an in-depth study of a swimmer in a 2D potential flow. Numerical tests are also provided

    Purcell magneto-elastic swimmer controlled by an external magnetic field

    Get PDF
    International audienceThis paper focuses on the mechanism of propulsion of a Purcell swimmer whose segments are magnetized and react to an external magnetic field applied into the fluid. By an asymptotic analysis, we prove that it is possible to steer the swimmer along a chosen direction when the control functions are prescribed as an oscillating field. Moreover, we discuss what are the main obstructions to overcome in order to get classical controllability result for this system

    Generic Controllability of 3D Swimmers in a Perfect Fluid

    Full text link
    We address the problem of controlling a dynamical system governing the motion of a 3D weighted shape changing body swimming in a perfect fluid. The rigid displacement of the swimmer results from the exchange of momentum between prescribed shape changes and the flow, the total impulse of the fluid-swimmer system being constant for all times. We prove the following tracking results: (i) Synchronized swimming: Maybe up to an arbitrarily small change of its density, any swimmer can approximately follow any given trajectory while, in addition, undergoing approximately any given shape changes. In this statement, the control consists in arbitrarily small superimposed deformations; (ii) Freestyle swimming: Maybe up to an arbitrarily small change of its density, any swimmer can approximately tracks any given trajectory by combining suitably at most five basic movements that can be generically chosen (no macro shape changes are prescribed in this statement)

    Lagrangian controllability at low Reynolds number

    Get PDF
    In this paper, we establish a result of Lagrangian controllability for a fluid at low Reynolds number, driven by the stationary Stokes equation. This amounts to the possibility of displacing a part of a fluid from one zone to another by suitably using a boundary control. This relies on a weak variant of the Runge-Walsh's theorem (on approximation of harmonic functions) concerning the Stokes equation. We give two variants of this result, one of which we believe to be better adapted to numerical simulations
    • …
    corecore