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LOCAL CONTROLLABILITY OF THE TWO-LINK

MAGNETO-ELASTIC MICRO-SWIMMER

LAETITIA GIRALDI JEAN-BAPTISTE POMET

Abstract. A recent promising technique for robotic micro-swimmers
is to endow them with a magnetization and apply an external magnetic
field to provoke their deformation. In this note we consider a simple pla-
nar micro-swimmer model made of two magnetized segments connected
by an elastic joint, controlled via a magnetic field. After recalling the
analytical model, we establish a local controllability result around the
straight position of the swimmer.
Keywords: micro-swimmer, controllability, return-method

I. Introduction

Micro-scale robotic swimmers have potential high impact applications.
For instance, they could be used in new therapeutic and diagnostic pro-
cedures such as targeted drug delivery or minimized invasive microsurgical
operations [16]. One of the main challenges is to design a controlled micro-
robot able to swim through a narrow channel. In this context, This note
states a controllability result for a (simplified model of) micro-robot which
is controlled by an external magnetic field that provokes deformations on
the magnetic body.

Swimming is the ability for a body to move through a fluid by performing
self-deformations. In general, the fluid is modeled by Navier-Stokes equa-
tions and the coupling with the swimming body gives rise to a very complex
model. It is well known [17] that the locomotion of microscopic bodies in
fluids like water (or of macroscopic bodies in a very viscous fluid) is char-
acterized by a low Reynolds number (a dimensionless ratio between inertia
effects and viscous effects, of the order of 10−6 for common micro-organisms),
and that it is then legitimate to consider that the fluid is governed by the
Stokes equations, so that hydrodynamic forces applied to the swimmer can
be derived linearly with respect to its speed, i.e., the associated Dirichlet-
to-Neumann mapping is linear, see for more details [3, 5, 13].

The absence of inertia in the model, that we assume from now on, makes
mobility more difficult: a typical obstruction, known as the scallop theorem
[17], imposes to use non reciprocal swimming strategies for achieving their
self-propulsion. It means that the swimmer is not able to move by using a
periodic change of shape with only one degree of freedom.
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The Resistive Force Theory [11] consists in approximating the Dirichlet-
to-Neumann mapping by an explicit dependence of the hydrodynamic force
on the relative speed at each point of the boundary. Following [2, 12], the
presnt note uses the simplified model resulting from this approximation.

As far as controllability of these devices is concerned, most known results,
starting with the pioneering work of A. Shapere and F. Wilczek [18], focus
on the case where the control is the rate of deformation of the swimmer’s
shape. One then deals with a driftless control-affine system and control-
lability derives, at least when the shape has a finite number of degrees of
freedom, from Lie algebraic methods, see for instance in [8]; more gener-
aly these control problems are related to non-holonomy of distributions and
sub-Riemannian geometry [15], where not only controllability but also op-
timality may be studied, as in [4, 10] where the shape has two degrees of
freedom and equations derive from the Resistive Force Theory (Purcell’s
swimmer). A model with more degrees of freedom is considered in [1]. In
[3, 9, 14, 6], the model is more complex, based on explicit solutions of Stokes
equations and not on the Resistive Force Theory.

In [2], for the first time, the case where the filament is not fully controlled
was considered: the filament is discretized into line segment with a certain
magnetization; the elasticity is represented by a torsional spring at each
joint and the control is, instead of the rate of deformation, an external
magnetic field that provokes deformation (and also some movement) of the
magnetized shape. In that paper, by exploiting sinusoidal external magnetic
fields, the authors show numerically that the swimmer can be steered along
one direction by using prescribed sinusoidal magnetic field. Here we simplify
the latter model by considering a swimmer made of only two magnetized
segments connected by an elastic joint. This reduced model has already
been addressed in [12], in which the authors studied the effect of a prescribed
sinusoidal magnetic field by expressing the leader term of the displacement
with respect to small external magnetic fields.

We go further by stating a local controllability result including reorienta-
tion and not only movement along the longitudinal direction. This is, to our
knowledge, the first true local controllability result for these partially actu-
ated systems. We point certain degenerate values of the model’s parameters
(lengths, magnetizations, spring constant) for which controllability does not
hold and prove local controllability for other values.

The model is derived in Section II; this part only uses ideas taken from [2],
but is needed to obtain more precise expressions of the equations of motion.
The controllability results are stated, commented and proved in Section III.
Finally, Section IV briefly states perspectives of this result.

II. Modeling

The present note considers the same swimmer model as [12]; it consists
of 2 magnetized segments of length `1 and `2, with a magnetic moment
M1 and M2 respectively, connected by a joint equipped with a torsional
spring of stiffness κ that tends to align the segments with one another. It
is constrained to move in a plane and is subject to an external magnetic
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field H as well as hydrodynamic forces due to the ambient fluid (these are
characterized later).

Figure 1. Magneto-elastic 2-link swimmer in plane subject
to an external magnetic field H(t).

Under the low Reynolds number assumption introduced and justified in
the introduction, inertia is negligible and the equations are obtained, as in
[5, 13], by a simple balance of forces and torques (see [2]):

Fh
1 + Fh

2 = 0 ,
Th

1 + Th
2 + Tm

1 + Tm
2 = 0 ,

Th
2 + Tm

2 + Tel
2 = 0 ,

(1)

where

• the two first equations state that the balance of exterior forces and
exterior moments for the whole system is zero, denoting by Fh

i the
hydrodynamic force applied by the fluid on the ith link, and by Th

i
and Tm

i the moment (with respect to any point, so we chose it to
be A2) applied on the ith link by the fluid and the magnetic field
respectively,
• the last equation states that the moment with respect to A2 of the

forces and torques applied the subsystem consisting of the second
link [A2, A3] is zero, Tel

2 being the elastic torque applied by the first
link on the second one (the moment of the contact force is zero
because it is applied at A2).

This only contains four non-trivial relations because the first equation takes
place in the horizontal plane and the other two on the vertical axis.

Let (ex, ey) be a fixed frame spanning the 2d-plane in which the robot
evolves and set ez := ex × ey. We call x = (x, y) the coordinates in the
frame (ex, ey) of the central point of the second segment, θ the angle that
it forms with the x-axis, α the relative angle between the first and second
segments (see Figure 1). The position and orientation of the swimmer are
characterized by the triplet (x, y, θ), and its shape by α. We denote by

e1,‖ =

(
cos(θ + α)
sin(θ + α)

)
, e2,‖ =

(
cos θ
sin θ

)
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the unit vectors aligned with segments [A1, A2] and [A2, A3], their orthogonal
vectors by

e1,⊥ =

(
− sin(θ + α)
cos(θ + α)

)
, e2,⊥ =

(
− sin θ
cos θ

)
.

We assume that the external magnetic field H is horizontal in such a way
that the motion holds in the plane generate by ex and ey and we call H‖
and H⊥ its coordinates into the moving frame

H = H‖ e2,‖ +H⊥ e2,⊥.

Let us now compute the different contributions in (1).

Elastic effects. The torsional spring delivers the following torque to seg-
ment [A2, A3]:

Tel
2 = κα ez .

Magnetic effects. The magnetic torque applied to the ith segment is

Tm
i = Mi

(
ei,‖ ×H

)
, i = 1, 2 ,

with the notations defined above.

Hydrodynamic effects. The force applied to the swimmer by the fluid
depends on their relative speed. As announced in the introduction, we
use the Resistive Force Theory [11], that assumes that the hydrodynamic
drag force of each segment is linear with respect to its velocity. More
precisely, if the point of abscissa s on segment i (i = 1, 2) has velocity
ui(s) = ui,‖(s) ei,‖ + ui,⊥(s) ei,⊥, then the drag force applied to that point
is given by

fi(s) = − ξi ui,‖(s) ei,‖ − ηi ui,⊥(s) ei,⊥ , i = 1, 2 , (2)

with ξi and ηi the constant positive drag coefficients.

Denote by Rϕ =
(

cosϕ − sinϕ
sinϕ cosϕ

)
the matrix of the rotation of angle ϕ, for

any ϕ. The matrix Rθ+α sends the basis (ex, ey) onto the basis (e1,‖, e1,⊥)
and Rθ sends the basis (ex, ey) onto the basis (e2,‖, e2,⊥), hence relation (2)
translates into

f1(s) = −R(θ+α) D1 R−(θ+α) u1(s) ,
f2(s) = −Rθ D2 R−θ u2(s) ,

(3)

with Di the matrix
(
ξi 0
0 ηi

)
for i = 1, 2 and where the vectors are coordinates

in the bases (ex, ey).
If the origin of the abscissa s is the point A2 on segment 1 and the point

x on segment 2, one has

x1(s) = x− `2
2

e2,‖ − s e1,‖ , 0 ≤ s ≤ `1 , (4)

x2(s) = x + s e2,‖ , −`2
2
≤ s ≤ `2

2
, (5)

hence

u1(s) = ẋ− `2
2
θ̇e2,⊥ − s

(
α̇+ θ̇

)
e1,⊥ , 0 ≤ s ≤ `1 , (6)

u2(s) = ẋ + sθ̇e2,⊥ , −`2
2
≤ s ≤ `2

2
. (7)
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The total hydrodynamic force acting on the first and second segments

are given by Fh
1 =

∫ `1
0 f1(s)ds, Fh

2 =
∫ `2

2

− `2
2

f2(s)ds, and a straightforward

integration yields

Fh
1 = Rθ+αD1

(
−`1R−(θ+α) ẋ +

`1`2
2
θ̇R−αey +

`1
2

2

(
θ̇ + α̇

)
ey

)
, (8)

Fh
2 = −`2RθD2R−θẋ . (9)

The moment with respect to point A2 of the hydrodynamic forces gener-
ated by the ith segment has the expression

Th
i :=

∫
i-th segment

(xi(s)− x +
`2
2

e2,‖)× fi(s) ds , i = 1, 2 ,

where × stands for the cross product, the expressions of xi(s) and fi(s) are
given by (3) through (7) and integration takes part for s ∈ [0, `1] on the first
link and s ∈ [−`2/2, `2/2] on the second link. This yields

Th
1 = η1`1

2
(

1
2 (− sinα ẋθ + cosα ẏθ)

−1
4`2 cosα θ̇ − 1

3η1 (θ̇ + α̇)
)

ez , (10)

Th
2 = −1

2η2`2
2
(
ẏθ + 1

6`2 θ̇
)

ez , (11)

where ẋθ and ẏθ are defined as:
(
ẋθ
ẏθ

)
= R−θẋ.

Substituting the elements in equations (1) with their just computed ex-
pressions yields

Mh(θ, α)


ẋ
ẏ

θ̇
α̇

 =


0
0

−M1

(
cosαH⊥ − sinαH‖

)
−M2H⊥

−κα−M2H⊥

 (12)

where

Mh(θ, α) =

(
Rθ+α 0

0 I2

)
E(α)

(
R−θ 0

0 I2

)
, (13)

with

E(α) =

(
E11(α) E12(α)
E21(α) E22(α)

)
, (14)

and

E11 =

− (ξ1`1 + ξ2`2) cosα − (ξ1`1 + η2`2) sinα
(η1`1 + ξ2`2) sinα − (η1`1 + η2`2) cosα

 ,

E12 =


1
2ξ1`1`2 sinα 0

1
2η1`1 (`1 + `2 cosα) 1

2η1`1
2

 ,

E21 = 1
2

η1`
2
1 η2`

2
2

0 η2`
2
2


− sinα cosα

0 −1

 ,

E22 = −
η1`

2
1 η2`

2
2

0 η2`
2
2


1

4 `2 cosα+ 1
3 `1

1
3 `1

1
12 `2 0

 .
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The determinant of E(α) is given by

− 1
9η1η2 `

3
1 `

3
2

(
1
4 (ξ1`1 + ξ2`2) (η1`1 + η2`2) cos2 α

+
(
ξ1`1 + 1

4 η2`2
)(

1
4 η1`1 + ξ2`2

)
sin2 α

)
,

hence it remains negative, E(α) is invertible for all α, so is Mh, and the
dynamics (12) of the swimmer can be written as a control system

ż = F0(z) +H‖F1(z) +H⊥F2(z) with z =


x
y
θ
α

 , (15)

affine with respect to the controls H‖ and H⊥ where F0, F1, F2 are vector

fields on R2 × S1 × S1 expressed as follows.

Proposition II.1. The vector fields F0, F1, F2 of system (15) are given by

F0(z) = καX4 , F1(z) = M1 sinαX3 ,

F2(z) = − (M1 cosα+M2) X3 −M2X4 ,
(16)

where X3 and X4 are the vector fields whose vector of coordinates in the
“rotating” basis

(cos θ
∂

∂x
+ sin θ

∂

∂y
,− sin θ

∂

∂x
+ cos θ

∂

∂y
,
∂

∂θ
,
∂

∂α
)

are respectively the third and fourth columns of E(α)−1.

Proof. This is easily derived from (12) and (13). Note that the matrix
depending on θ+ α in (13) plays no role in (12) because it leaves the right-
hand side invariant. �

III. Controllability result

According to (16) and the fact that the vector field X4 does not vanish
(its components are one column of an invertible matrix), the zeroes of F0 are
exactly described by (x, y, θ) ∈ R2 × S1 arbitrary and α = 0. Hence these
are the equilibrium positions of system (15) when the control, namely the
magnetic field, is zero: H‖ = H⊥ = 0. Local controllability describes how
all points (x, y, θ, α) sufficiently close to a fixed equilibrium (xe, ye, θe, 0) can
be reached by applying small magnetic fields for a small duration using a
trajectory that remains close to (xe, ye, θe, 0). The local controllability result
stated below does not ensure that the control can be chosen arbitrarily small,
i.e. this result is not local with respect to the control; it however gives an
explicit bound on the needed control.

A. Main result. Let us first point two cases where controllability cannot
hold. In the first case, the variables α and θ may be controlled but x(t) and
y(t) are related to α(t) and θ(t) by a formula, valid everywhere, that does
not depend on the control: the system is nowhere controllable. In the second
case, the variables x, y, θ may be controlled but α(0) = 0 implies α(t) = 0 for
all t, irrespective of the control, thus forbidding local controllability around
any (xe, ye, θe, 0) but possibly not away from {α = 0}.
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Proposition III.1. • If η1 − ξ1 = η2 − ξ2 = 0, then there exists two
constants x0, y0, that depend on the initial conditions of the state
but not on the control (the magnetic field H), such that solutions of
(15) satisfy, for all t,

x(t) = x0 +
η1`1 (`1 cos(α(t) + θ(t)) + `2 cosα(t))

2(η1`1 + η2`2)
,

y(t) = y0 +
η1`1 (`1 sin(α(t) + θ(t)) + `2 sinα(t))

2(η1`1 + η2`2)
.

• If (
3 + 4

`2
`1

+
η2`2

2

η1`1
2

)
M1 −

(
3 + 4

`1
`2

+
η1`1

2

η2`2
2

)
M2 = 0 , (17)

then the set {α = 0} is invariant for equations (15).

Proof. A simple computation shows that if η1 − ξ1 = η2 − ξ2 = 0, then the
time-derivatives of

x− η1`1 (`1 cos(α+ θ) + `2 cosα)

2(η1`1 + η2`2)

and

y − η1`1 (`1 sin(α+ θ) + `2 sinα)

2(η1`1 + η2`2)

are zero (i.e. these are first intergrals of the system), hence the first point.
Another computation (see details further, a few lines after (42)) shows that α̇
is zero when (17) is satisfied and α = 0, hence proving the second point. �

From now on, we make the following assumption:

Assumption III.2. The constants `1, `2, ξ1, ξ2, η1, η2, M1, M2, κ char-
acterizing the system are such that `1, `2, ξ1, ξ2, η1, η2 and κ are positive,
M1 and M2 are nonzero, and

( η1 − ξ1 , η2 − ξ2 ) 6= (0, 0) , (18)

η1 ≥ ξ1 , η2 ≥ ξ2 , (19)(
3 + 4

`2
`1

+
η2`2

2

η1`1
2

)
M1 −

(
3 + 4

`1
`2

+
η1`1

2

η2`2
2

)
M2 6= 0 . (20)

Remark III.3. Conditions (18) and (20) exactly exclude the cases in which
Proposition III.1 applies. We have added conditions (19). Physically, these
inequalities are usually satisfied: they state that the normal drag force is
more important than the tangential one. Technically, they avoid numerous
sub-cases. For instance, (24) is not satisfied if η1l1(η2−ξ2)+η2l2(η1−ξ1) = 0,
that does not contradict (18) but contradicts (18) and (20); the same happens
in the proof of Lemma III.14. Theorem III.4 however still holds without (19),
that we added to make the proofs lighter.

Let us now state our main result.

Theorem III.4 (Local controllability). Let Assumption III.2 hold. Fix an
equilibrium ze = (xe, ye, θe, 0). LetW be a neighborhood of ze in R2×S1×S1

and T, ε positive numbers, then there exists another neighborhood V ⊂ W of
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ze such that, for any zi = (xi, θi, αi) and zf = (xf , θf , αf ) in V, there exist
bounded measurable functions H‖ and H⊥ in L∞([0, T ]), IR) such that

‖H⊥‖∞ < ε , ‖H‖‖∞ < 2κ

∣∣∣∣M2 +M1

M2M1

∣∣∣∣+ ε (21)

and, if t 7→ z(t) = (x(t), θ(t), α(t)) is the solution of (15) starting at zi,
then z(T ) = zf and z(t) ∈ W for all time t ∈ [0, T ].

We postpone the proof of this result to make further comments. They
are made simpler by restricting to one special equilibrium:

Proposition III.5 (Invariance). If Theorem III.4 (resp. any kind of local
controllability like STLC, see Definition III.6 below) holds in the special case
where ze is “the origin”

O = (0, 0, 0, 0) ∈ R2 × S1 × S1 , (22)

i.e. when xe = ye = θe = 0, then the same holds for arbitrary ze =
(xe, ye, θe, 0).

Proof. Solutions of (15) are invariant under the transformations(
( xy ) , θ, α,H‖, H⊥

)
7→
(
Rθ̄

(
x+x̄
y+ȳ

)
, θ + θ̄, α,H‖, H⊥

)
,

hence everything may be carried from a neighborhood of O to a neighbor-
hood of an arbitrary (xe, ye, θe, 0). �

B. Discussion. We assume (xe, ye, θe, 0) = (0, 0, 0, 0) = O without loss
of generality. The strongest notion of local controllability is the following
(definition taken from [8, Definition 3.2]). It is interesting and natural in
that that it is local both in control and in space.

Definition III.6 (STLC). The system (15) is said to be small time locally
controllable (STLC) at equilibrium ze = (xe, ye, θe, 0) and control (0, 0) if
and only if, for any neighborhood W of ze, any T > 0, and any ε > 0, there
exists another neighborhood V ⊂ W of ze such that, for any zi = (xi, θi, αi)
and zf = (xf , θf , αf ) in V, there exist bounded measurable functions H‖ and
H⊥ in L∞([0, T ]), IR) such that ‖H⊥‖∞ < ε, ‖H‖‖∞ < ε, and, if t 7→ z(t) =

(x(t), θ(t), α(t)) is the solution of (15) starting at zi, then z(T ) = zf and
z(t) ∈ W for all time t ∈ [0, T ].

Theorem III.4 establishes a rather strong form of local controllability with
an explicit bound on the controls. It is however weaker than STLC because

the bound on the controls remains larger than 2κ |M1+M2|
|M2M1| , hence it does not

go to zero when V becomes smaller and smaller. Theorem III.4 establishes
STLC only if M1 +M2 = 0, and we do not know whether STLC holds or not
when M1 +M2 6= 0 (physically, we expect to have some sort of lower-bound
on the magnetic field to deform the swimmer, but this is not formalized).

Let us review the classical ways to establish STLC, namely the “linear
test” and the theorem on “bad and good brackets” due to H. Sussmann [19],
and explain why they fail. The notion of linearized system along a trajectory
is instrumental.
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Definition III.7. The linearized control system of (15) around a trajectory
t 7→ (z∗(t), H∗⊥(t), H∗‖ (t)) defined on [0, T ] for some T > 0 is the time-

varying control system

ẏ = A(t)y + B(t)v , (23)

where A(t) is the Jacobian of z 7→ F0(z) + H∗⊥(t)F2(z) + H∗‖ (t)F1(z) with

respect to z at z = z∗(t) and the two columns of B(t) are F1(z∗(t)) and
F2(z∗(t)).

If the trajectory is simply the equilibrium point O and the reference
controls are zero, A and B do not depend on time and A is simply the
Jacobian of z 7→ F0(z) at z = O.

Proposition III.8. The controllability matrix C =
[
B,AB,A2B,A3B

]
(8

columns, 4 lines) for the linearized control system of (15) at the equilibrium
O has rank at most 2.

Proof. One deduces from (16) that on the one hand the Jacobian of z 7→
F0(z) at O has only one nonzero column, proportional to X4(O), and on
the other hand the vector field F1 is zero at O. Hence the rank of C is at
most the rank of {X4(O),F2(O)}. �

The linear test for local controllability [8, Theorem 3.8] states that a
nonlinear control system is STLC at an equilibrium if its linearized control
system at this point is controllable. According to the Kalman rank condition
[8, Theorem 1.16], the latter linearized system is not controllable because
the rank of C is stricly less than 4. Hence, the linear test cannot be applied.

A more general sufficient condition was introduced in [19, section 7] and
recalled in [8, section 3.4]. It requires the following notions.

Definition III.9 (LARC). System (15) satisfies the LARC (Lie Algebra
Rank Condition) at O if and only if the values at O of all iterated Lie
brackets of the vector fields F0, F1 and F2 span a vector space of dimension
4.

Now, for θ, η positive numbers and h an iterated Lie bracket of the vector
fields F0, F1, F2, let

• σ(h) be the sum of h and the iterated Lie bracket obtained by ex-
changing F1 and F2 in h,
• δi(h) ∈ N (i = 0, 1, 2) be the number of times the vector field Fi

appears in h,
• ρθ(h) be given by ρθ(h) = θδ0(h) + δ1(h) + δ2(h),
• Gη be the vector subspace spanned by all vectors g(O) where g is

an iterated bracket of F0,F1,F2 such that ρθ(g) < η.

Note: the LARC is equivalent to Gη having dimension 4 for large enough η.

Definition III.10 (Sussman’s condition S(θ) [19]). Let θ be a number,
0 ≤ θ ≤ 1. System (15) satisfies the condition S(θ) at O if and only if it
satisfies the LARC and any iterated Lie bracket h of the vector fields F0, F1,
F2 such that δ0(h) is odd and both δ1(h) and δ2(h) are even (“bad” brackets)
satisfies σ(h)(O) ∈ Gρθ(h).
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The main theorem in [19] states that system (15) is STLC if the condition
S(θ) holds for at least one θ in [0, 1]. Proposition III.11 below shows that
this sufficient condition cannot be applied, except if M1 + M2 = 0. This is
consistant with our Theorem III.4, that establishes STLC only in this case.

Proposition III.11. Assume that the parameters of the system (15) satisfy
Assumption III.2. Then

(1) the LARC is satisfied at O,
(2) if M1 +M2 6= 0, then S(θ) is not satisfied at O for any θ in [0, 1],
(3) if M1 +M2 = 0, then S(1) is satisfied at O.

Proof. In order to save space, we denote by (· · · ) any coefficient whose value
does not matter and by fi1i2..im or Xi1i2..im the value at O of the iterated
Lie bracket [Fi1 , [Fi2 , · · ·Fim ] · · · ]] or [Xi1 , [Xi2 , · · ·Xim ] · · · ]]: for example,
f0 = F0(O), X34 = [X3,X4](O), f1021 = [F1, [F0, [F2,F1]]](O) .

Computing Lie brackets with a computer algebra software (Maple), taking
their value at O and forming determinants, we show that

det (X3, X4, X34, X334) and det (X3, X4, X34, X434)

cannot be both zero if (18) and (19) hold. This proves:

Rank{X3, X4, X34, X334, X434} = 4 . (24)

Point (1) follows because, with L a function of the constants that is nonzero
if and only if (20) is met, one has

f02 = κLX4 , f12 = M1LX3 , f212 = 2LX34 + (· · · )X3 , (25)

and, modulo a linear combination of X3, X4 and X34,

f12212 − f21212 = 2M1L
2X334 , f02212 − f20212 = 2κL2X434 . (26)

These are obtained from (16), the expressions of X3 and X4 are needed to
compute the number L.

To prove point (2), we use the “bad” bracket h = [F2, [F0,F2]]. Since
f101 = 0, one has σ(h)(O) = f202. Computing f202 yields:

σ(h)(O) = −2κ(M1 +M2)LX34 + (· · · )X4 . (27)

One has ρθ(h) = 2 + θ. G2+θ is, by definition, the vector space spanned by
f0, f1, f2, f01, f02, f12, that are linear combinations of X3, X4 (see (16) and
(25)), and, depending on the value of θ, by some f0···01, that are all zero,
and by some f0···02, that are all colinear to X4. Hence G2+θ is spanned by
X3 and X4. Considering equation (27) where M1 +M2 6= 0 is assumed, one
then has σ(h)(O) /∈ G2+θ, proving that the condition S(θ) does not hold.

For point (3), we assume M1 +M2 = 0 and take θ = 1 so that ρθ(h) is the
order of the iterated Lie bracket h. According to (25) and (26), Lie brackets
of order 5 generate the whole space, i.e. Gη is the whole tangent space R4 if
η > 5. Besides [F1, [F0,F1]] and [F2, [F0,F2]], the bad Lie brackets of order
at most 5 are these that contain three times F0 and two times either F1 or
F2, these that contain one time F0, two times F1 and two times F2, and
these that contain one time F0 and four times either F1 or F2; it can be
checked that they all belong to G5, spanned by X3, X4 X34 and X434. �
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C. Proof of Theorem III.4. This proof relies on the return method, in-
troduced by J.-M. Coron in [7] for stabilization purposes, and exposed in [8,
chapter 6]. It has mostly been used to establish controllability results for
infinite dimensional control systems (PDEs). The idea of the method is to
find a trajectory (“loop”) of system (15) such that it starts and ends at the
equilibrium O and the linearized control system around this trajectory is
controllable, and then conclude by using the implicit function theorem that
one can go from any state close to the equilibrium to any other final state
close to the equilibrium. The proof relies on Lemma III.12, that identifies a
family of bounded controls producing “loops” from O to O and on Lemma
III.13 that shows controllability of the linearized system (15) around some
of these loop trajectories.

Lemma III.12 (return trajectory). Let Assumption III.2 hold. There exist
positive numbers k, T and H with the following property: for any T , 0 <
T ≤ T , and any measurable control t 7→ H(t) = (H⊥(t), H‖(t)) defined

on [0, T/2] and bounded by H, there is a bounded measurable control t 7→
H∗(t) = (H∗⊥(t), H∗‖ (t)) defined on [0, T ] such that

H∗⊥(t) = H⊥(t) and H∗‖ (t) = H‖(t) , 0 ≤ t ≤ T

2
, (28)

‖H∗⊥(.)‖∞ ≤ k ‖H(.)‖∞ , (29)

‖H∗‖ (.)‖∞ ≤ 2κ

∣∣∣∣M1 +M2

M1M2

∣∣∣∣+ k ‖H(.)‖∞ , (30)

and, if t 7→ z∗(t) = (x∗(t), θ∗(t), α∗(t)) is the solution of system (15) with
control H∗ and initial condition z∗(0) = O, then

z∗(t) = z∗(T − t) , 0 ≤ t ≤ T , (31)

and α∗(t) remains in [−π
2 ,

π
2 ], for all t.

Lemma III.13 (linear controllability along trajectories). For any number
β, denote by t 7→ zβ(t) the solution of (15) with initial condition zβ(0) = O
and (constant) controls

Hβ
⊥(t) = β , Hβ

‖ (t) = 0 . (32)

It is defined on [0,+∞). Under Assumption III.2, there exist arbitrarily
small positive values of β such that the linearized system (23) of (15) around

(zβ(.), Hβ
⊥(.), Hβ

‖ (.)) is controllable on [0, τ ] for any positive τ .

These two lemmas are proved later. Let us first use them.

Proof of Theorem III.4. Let us first prove the theorem assuming zi = O.
Let ε > 0, T > 0, the equilibrium O and its neighborhood W be given.
Lemma III.12 provides some constants k, H, T that depend only on O and
the constants of the problem.

In the sequel we assume T ≤ T without loss of generality; indeed, if
T > T , first solve the problem for T = T (and the same ε, O) and denote

by t 7→ HT (t) = (HT
‖ (t), HT

⊥(t)) the control solving that problem, then the



12 CONTROLLABILITY OF THE 2-LINK MAGNETO-ELASTIC MICRO-SMIMMER

solution for the actual T > T is given by

H(t) =

{
0 if 0 ≤ t < T − T ,
HT (t− T + T ) if T − T ≤ t ≤ T .

From Lemma III.13, there exists some β > 0 such that β < ε/2k, β < H,

and the linearized system (23) of (15) around zβ(.) = (xβ(.), Hβ
⊥(.), Hβ

‖ (.))

(defined in the lemma) is controllable on [0, τ ] for any positive τ . Since

zβ(0) = O, there is some T > 0 such that z∗([0, T ]) ⊂ W. We assume that

T ≤ T without loss of generality for the same reason that allowed us to
assume T ≤ T above.

Now apply Lemma III.12 with

H⊥(t) = Hβ
⊥(t) = β ,

H‖(t) = Hβ(t) = 0 , 0 ≤ t ≤ T

2
. (33)

This yields a control t 7→ (H∗⊥(t), H∗‖ (t)) associated with a solution t 7→ z∗(t)

of (15), both defined on [0, T ], such that

‖H∗⊥‖∞ <
ε

2
, ‖H∗‖‖∞ <

2κ |M1 +M2|
M1M2

+
ε

2
,

z∗(0) = z∗(T ) = O , z∗(t) ∈ W , t ∈ [0, T ] ,

(34)

and the linear approximation of (15) along this solution is controllable. Note

that z∗(t) remains in W because T ≤ T .
Let the end-point mapping E : L∞([0, T ],R2)→ R4 be the one that maps

a control on [0, T ] to the point z(T ) with z(.) the solution of the system (15)
with this control and initial value z(0) = O. We have E(H∗(.)) = O and
linear controllability amounts to E being a submersion at this point; hence
E sends any neighborhood of H∗ in L∞([0, T ],R2) to a neighborhood of O;
this yields all the properties of the theorem restricted to zi = O.

To obtain the theorem for arbitrary zi, zf , apply twice the restricted the-
orem we just proved: once with zi, zf replaced by O, zf , and once with zi, zf

replaced by O, zi and T < 0 (the proof can be adapted mutatis mutandis to
T < 0); then concatenate the two controls in order to go from zi to O first
and then from O to xf . �

Proof of Lemma III.12. Taking T and H small enough, any solution z of
(15) with z(0) = O with a control H bounded by H satisfies α(t) ∈ [−π

2 ,
π
2 ]

for all t ∈ [0, T ]. Consider T positive smaller than T and an arbitrary control
H : t 7→ (H⊥(t), H‖(t)) defined on [0, T/2] bounded by H. Let t 7→ z∗(t) =

(x∗(t), θ∗(t), α∗(t)) be the solution of system (15) on [0, T2 ] associated with
the control H∗ and starting at O. We now consider a piecewise function
H∗⊥(.) and H∗‖ (.) defined as

H∗⊥(t) = H⊥(t) , H∗‖ (t) = H‖(t) , t ∈ [0, T2 ] ,

H∗⊥(t) = 2κ
M2
α∗(t)−H⊥(T − t) , t ∈

[
T
2 , T

]
,

H∗‖ (t) = 2κα∗(t)
M2M1 sinα∗(t) (M2 +M1 cosα∗(t))−H‖(T − t) , t ∈ [T2 , T ].

(35)
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This particular control leads the swimmer to come back to the starting point
O at time T by using the same path. Indeed, the latter condition reads

z∗(t) = z∗(T − t) , t ∈
[
T

2
, T

]
. (36)

Differentiating the latter with respect to time, we get:

2 F0(z∗) + F1(z∗)
(
H∗‖ +H‖

)
+ F2(z∗) (H∗⊥ +H⊥) = 0 , t ∈

[
T

2
, T

]
. (37)

By using the expression (16) for F0, F1 and F2 and because X3 and X4 are
linearly independent, the projection onto the vector space generated by Xi,
i = 3, 4 of the previous equality has to vanish. The two controls H∗‖ and H∗⊥
defined in (35) solve the latter system of linear equation (37). Note that the
latter control functions is well-defined since α∗(t) remains in [−π

2 ,
π
2 ].

Moreover, by Gronwall Lemma, there exists a constant k′ (which depends
on T ) such that

|α∗(t)| ≤ k′‖H‖∞ , t ∈ [0, T ] .

Using the fact that α∗

sinα∗ ≤ 1 + (α∗)2

2 (since α∗ < π
2 ), we get equations (29)-

(30) from equations (35) with k larger than 1+ 2κ
M2
k′ and 1+M1+M2

M1M2
k′2H. �

The proof of Lemma III.13 requires a more technical lemma:

Lemma III.14. Let Assumption III.2 hold. There exist arbitrarily small
values of β such that for a certain α > 0, the distribution spanned by the

vector fields X3, X4, [X3,X4] and Xβ
5 , with

Xβ
5 = −β (M2 +M1 cosα) [X3, [X3,X4]] + (κα− βM2) [X4, [X3,X4]] , (38)

has rank 4 at all points in

{z = (x, y, θ, α) ∈ R4 , |α| < α, α 6= 0} . (39)

Proof. The determinant of X3, X4, [X3, X4], Xβ
5 depends only on α and β

(and the fixed parameters of the system), We computed it using a symbolic
computation software (Maple). It is a polynomial with respect to cosα of
degree at most 12, whose coefficients are affine with respect to α and β. Its
leading coefficient does not depend on α or β and is zero only if ηi = ξi
or ηi = 4 ξi, for i = 1 or i = 2. In all these particular cases, and using
(18)-(20), this determinant is a polynomial in cosα with degree less than 12
but at most 1. Hence, for arbitrarily small values of β, the analytic function

of one variable α 7→ det(X3,X4, [X3,X4],Xβ
5 ) is non zero which ensures the

existence of α. �

Proof of Lemma III.13. Define the matrices Bj(t) =
(

d
dt −A(t)

)j
B(t) , with

A(t) and B(t) given by (23). According to [8, Theorem 1.18], the linear sys-
tem (23) is controllable on [0, τ ] if there is at least one t, 0 < t < τ , such
that

Sp(t) := Span
{
Bj(t)v; v ∈ R2; j ≥ 0

}
= R4 . (40)
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By a simple computation, it turns out that, with the constant controls
H∗‖(t) = 0 and H∗⊥(t) = β, the ith column of Bj(t) is the column of coordi-

nates of the vector field Cβ
i,j at point z∗(t), with

Cβ
i,0 = Fi , Cβ

i,1 = [F0 + β F1,C
β
i,0] ,Cβ

i,2 = [F0 + β F1,C
β
i,1] (41)

and so on (we do not need j > 2). We claim that

for any β > 0, there exists β∗, 0 < β∗ ≤ β, and α > 0, such that

the distribution spanned by Cβ
1,0,C

β
2,0,C

β
1,1,C

β
2,1,C

β
1,2,C

β
2,2

has rank 4 at all points of (39).

 (42)

This claim implies Lemma III.13. Indeed, take β∗ in the lemma to be the one
given by (42). Along the trajectory t 7→ zβ

∗
(t) = (x∗(t), y∗(t), θ∗(t), α∗(t)),

one has α∗(0) = 0, and this implies α̇∗(0) 6= 0 because (20) is satisfied, H⊥
is nonzero, and a straightforward computation from (15) shows that

α̇ = 3

(
3 + 4 `2`1 + η2`2

2

η1`1
2

)
M1 −

(
3 + 4 `1`2 + η1`1

2

η2`2
2

)
M2

`1 `2 (η1`1 + η2`2)
H⊥ .

when α = 0. Hence there exists t̄ > 0 (that depends on β∗) such that

0 < t < t̄ ⇒ α(t) 6= 0 and |α(t)| < α . (43)

According to the above remark and if the claim holds, (40) holds for all t,
0 < t < t̄; linear controllability on [0, τ ] in the lemma follows from (40) at
some positive t smaller than min{t̄, τ}.

Let us now prove (42). Recall that

F0 + β F1 = −β (M2 +M1 cosα) X3 + (κα− βM2) X4 . (44)

According to (16) and (41), and since M1 6= 0 and M2 6= 0, Cβ
1,0 and Cβ

2,0

span the same distribution as X3 and X4 at points where α 6= 0. Hence

Cβ
1,0,C

β
2,0,C

β
1,1,C

β
2,1 span the same distribution as X3, X4, [F0 + β F1,X3]

and [F0+β F1,X4], that is, according to (44), X3, X4, (βM2 − κα) [X3,X4],
and −β (M2 +M1 cosα) [X3,X4] i.e., if, in addition, (M2 +M1 cosα, κα−
βM2) 6= (0, 0), the same distribution as {X3, X4, [X3,X4]}, and finally Cβ

1,0,

Cβ
2,0, Cβ

1,1, Cβ
2,1, Cβ

1,2, Cβ
2,2 span the same distribution as X3, X4, [X3,X4]

and Xβ
5 given by (38) at points where α 6= 0 and (M2+M1 cosα, κα−βM2) 6=

(0, 0). This property, together with Lemma III.14, proves the claim (42),
hence Lemma III.13. �

IV. Perspectives

For a micro-swimmer model made by two magnetized segments connected
by an elastic joint, controlled by an external magnetic field, this note es-
tablishes local controllability around the straight position by controls that
cannot be made arbitrarily small, but an explicit bound on the controls is
given. This raises two natural questions.

On the one hand one would like to decide whether the controls can
be taken arbitrarily small, thus proving STLC in the sense of [8], or the
(nonzero) bound is sharp, and hence the system is not STLC. On the other
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hand, since controllability around non-straight positions is easier, it is nat-
ural to address the question of global controllability as an extension of this
note.

Further perspectives, that are currently under our investigation, are to
extend our result to more realistic swimmers, for instance by considering
additional segments. An other important issue is to study the optimal con-
trol problem i.e., finding the magnetic fields in such a way that the swimmer
reaches a desired configuration as quick as possible; this has already been
done for swimmers that are controlled by the velocity at each of their joints
[10] but the study for the present system where theses velocities are indi-
rectly controlled by a magnetic field is quite different.
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