2,011 research outputs found

    MIRAI Architecture for Heterogeneous Network

    Get PDF
    One of the keywords that describe next-generation wireless communications is "seamless." As part of the e-Japan Plan promoted by the Japanese Government, the Multimedia Integrated Network by Radio Access Innovation project has as its goal the development of new technologies to enable seamless integration of various wireless access systems for practical use by 2005. This article describes a heterogeneous network architecture including a common tool, a common platform, and a common access. In particular, software-defined radio technologies are used to develop a multiservice user terminal to access different wireless networks. The common platform for various wireless networks is based on a wireless-supporting IPv6 network. A basic access network, separated from other wireless access networks, is used as a means for wireless system discovery, signaling, and paging. A proof-of-concept experimental demonstration system is available

    Millimeter-wave Evolution for 5G Cellular Networks

    Full text link
    Triggered by the explosion of mobile traffic, 5G (5th Generation) cellular network requires evolution to increase the system rate 1000 times higher than the current systems in 10 years. Motivated by this common problem, there are several studies to integrate mm-wave access into current cellular networks as multi-band heterogeneous networks to exploit the ultra-wideband aspect of the mm-wave band. The authors of this paper have proposed comprehensive architecture of cellular networks with mm-wave access, where mm-wave small cell basestations and a conventional macro basestation are connected to Centralized-RAN (C-RAN) to effectively operate the system by enabling power efficient seamless handover as well as centralized resource control including dynamic cell structuring to match the limited coverage of mm-wave access with high traffic user locations via user-plane/control-plane splitting. In this paper, to prove the effectiveness of the proposed 5G cellular networks with mm-wave access, system level simulation is conducted by introducing an expected future traffic model, a measurement based mm-wave propagation model, and a centralized cell association algorithm by exploiting the C-RAN architecture. The numerical results show the effectiveness of the proposed network to realize 1000 times higher system rate than the current network in 10 years which is not achieved by the small cells using commonly considered 3.5 GHz band. Furthermore, the paper also gives latest status of mm-wave devices and regulations to show the feasibility of using mm-wave in the 5G systems.Comment: 17 pages, 12 figures, accepted to be published in IEICE Transactions on Communications. (Mar. 2015

    Energy efficient resource allocation in 5G hybrid heterogeneous networks: A game theoretic approach

    Get PDF
    Millimeter wave (mmWave) technology integrated with heterogeneous networks (HetNets) has emerged as a new wave to overcome the thirst for higher data rates and severe shortage of spectrum. In this paper, we consider the uplink of a hybrid HetNet with femtocells overlaid on a macrocell, and formulate a two layer game theoretic framework to maximise the energy efficiency (EE) while optimising the network resources. The outer layer allows each femtocell access point (FAP) to maximise the data rate of its users by selecting the frequency band either from the sub-6 GHz and the mmWave. The solution to this non-cooperative game can be obtained by using pure strategy Nash equilibrium. The inner layer ensures the energy efficient user association method subject to the minimum rate and maximum transmission power constraints by using dual decomposition approach. Simulation results show that the proposed hybrid HetNet scheme exploiting the mmWave frequency band improves the sum-rate and EE in comparison to the scenario where all the networks operate at sub-6 GHz frequency band. The performance can further be enhanced by incorporating the power control mechanism
    • …
    corecore