93,386 research outputs found

    Spectral Network Principle for Frequency Synchronization in Repulsive Laser Networks

    Full text link
    Network synchronization of lasers is critical for reaching high-power levels and for effective optical computing. Yet, the role of network topology for the frequency synchronization of lasers is not well understood. Here, we report our significant progress toward solving this critical problem for networks of heterogeneous laser model oscillators with repulsive coupling. We discover a general approximate principle for predicting the onset of frequency synchronization from the spectral knowledge of a complex matrix representing a combination of the signless Laplacian induced by repulsive coupling and a matrix associated with intrinsic frequency detuning. We show that the gap between the two smallest eigenvalues of the complex matrix generally controls the coupling threshold for frequency synchronization. In stark contrast with Laplacian networks, we demonstrate that local rings and all-to-all networks prevent frequency synchronization, whereas full bipartite networks have optimal synchronization properties. Beyond laser models, we show that, with a few exceptions, the spectral principle can be applied to repulsive Kuramoto networks. Our results may provide guidelines for optimal designs of scalable laser networks capable of achieving reliable synchronization

    Local Dirac Synchronization on Networks

    Get PDF
    We propose Local Dirac Synchronization which uses the Dirac operator to capture the dynamics of coupled nodes and link signals on an arbitrary network. In Local Dirac Synchronization, the harmonic modes of the dynamics oscillate freely while the other modes are interacting non-linearly, leading to a collectively synchronized state when the coupling constant of the model is increased. Local Dirac Synchronization is characterized by discontinuous transitions and the emergence of a rhythmic coherent phase. In this rhythmic phase, one of the two complex order parameters oscillates in the complex plane at a slow frequency (called emergent frequency) in the frame in which the intrinsic frequencies have zero average. Our theoretical results obtained within the annealed approximation are validated by extensive numerical results on fully connected networks and sparse Poisson and scale-free networks. Local Dirac Synchronization on both random and real networks, such as the connectome of Caenorhabditis Elegans, reveals the interplay between topology (Betti numbers and harmonic modes) and non-linear dynamics. This unveils how topology might play a role in the onset of brain rhythms.Comment: 17 pages, 16 figures + appendice

    Formation of Modularity in a Model of Evolving Networks

    Full text link
    Modularity structures are common in various social and biological networks. However, its dynamical origin remains an open question. In this work, we set up a dynamical model describing the evolution of a social network. Based on the observations of real social networks, we introduced a link-creating/deleting strategy according to the local dynamics in the model. Thus the coevolution of dynamics and topology naturally determines the network properties. It is found that for a small coupling strength, the networked system cannot reach any synchronization and the network topology is homogeneous. Interestingly, when the coupling strength is large enough, the networked system spontaneously forms communities with different dynamical states. Meanwhile, the network topology becomes heterogeneous with modular structures. It is further shown that in a certain parameter regime, both the degree and the community size in the formed network follow a power-law distribution, and the networks are found to be assortative. These results are consistent with the characteristics of many empirical networks, and are helpful to understand the mechanism of formation of modularity in complex networks.Comment: 6 pages, 4 figur

    Self-regulation of a network of Kuramoto oscillators

    Full text link
    Treballs Finals de Màster en Física dels Sistemes Complexos i Biofísica, Facultat de Física, Universitat de Barcelona. Curs: 2022-2023. Tutors: Albert Díaz-Guilera, Jordi Soriano FraderaPersistent global synchronization of a neuronal network is considered a pathological, undesired state. Such as synchronization is often caused by the loss of neurons that regulate network dynamics, or cells that assist these neurons such as glial cells. Here we propose a self-regulation model in the framework of complex networks in which we assume that, for sake of simplicity, glial cells prevent the over synchronization of the neuronal network. We have considered a brain-like network characterized by a modular organization combined with a dynamic description of the nodes as Kuramoto oscillators. We have applied a self-regulation mechanism to keep local synchronization while avoiding global synchronization at the same time. To do so, we have added self-regulation to the system by switching off for a certain period of time a selection of edges that link nodes showing a synchronization above a certain threshold. Despite the simplicity of the approximation, our results show that it is possible to maintain a high local synchronization (module level) while keeping low the global one. In addition, characteristic dynamic patterns have been observed when analysing synchronization between modules in large modular networks. Our work could help to understand the effects of localized regulatory actions on modular systems with synchronous phenomena, such as neuroscience and other fields

    Analysis and Design of Adaptive Synchronization of a Complex Dynamical Network with Time-Delayed Nodes and Coupling Delays

    Get PDF
    This paper is devoted to the study of synchronization problems in uncertain dynamical networks with time-delayed nodes and coupling delays. First, a complex dynamical network model with time-delayed nodes and coupling delays is given. Second, for a complex dynamical network with known or unknown but bounded nonlinear couplings, an adaptive controller is designed, which can ensure that the state of a dynamical network asymptotically synchronizes at the individual node state locally or globally in an arbitrary specified network. Then, the Lyapunov-Krasovskii stability theory is employed to estimate the network coupling parameters. The main results provide sufficient conditions for synchronization under local or global circumstances, respectively. Finally, two typical examples are given, using the M-G system as the nodes of the ring dynamical network and second-order nodes in the dynamical network with time-varying communication delays and switching communication topologies, which illustrate the effectiveness of the proposed controller design methods

    Synchronization in a Novel Local-World Dynamical Network Model

    Get PDF
    Advances in complex network research have recently stimulated increasing interests in understanding the relationship between the topology and dynamics of complex networks. In the paper, we study the synchronizability of a class of local-world dynamical networks. Then, we have proposed a local-world synchronization-optimal growth topology model. Compared with the local-world evolving network model, it exhibits a stronger synchronizability. We also investigate the robustness of the synchronizability with respect to random failures and the fragility of the synchronizability with specific removal of nodes

    Connectivity Influences on Nonlinear Dynamics in Weakly-Synchronized Networks: Insights from Rössler Systems, Electronic Chaotic Oscillators, Model and Biological Neurons

    Get PDF
    Natural and engineered networks, such as interconnected neurons, ecological and social networks, coupled oscillators, wireless terminals and power loads, are characterized by an appreciable heterogeneity in the local connectivity around each node. For instance, in both elementary structures such as stars and complex graphs having scale-free topology, a minority of elements are linked to the rest of the network disproportionately strongly. While the effect of the arrangement of structural connections on the emergent synchronization pattern has been studied extensively, considerably less is known about its influence on the temporal dynamics unfolding within each node. Here, we present a comprehensive investigation across diverse simulated and experimental systems, encompassing star and complex networks of Rössler systems, coupled hysteresis-based electronic oscillators, microcircuits of leaky integrate-and-fire model neurons, and finally recordings from in-vitro cultures of spontaneously-growing neuronal networks. We systematically consider a range of dynamical measures, including the correlation dimension, nonlinear prediction error, permutation entropy, and other information-theoretical indices. The empirical evidence gathered reveals that under situations of weak synchronization, wherein rather than a collective behavior one observes significantly differentiated dynamics, denser connectivity tends to locally promote the emergence of stronger signatures of nonlinear dynamics. In deterministic systems, transition to chaos and generation of higher-dimensional signals were observed; however, when the coupling is stronger, this relationship may be lost or even inverted. In systems with a strong stochastic component, the generation of more temporally-organized activity could be induced. These observations have many potential implications across diverse fields of basic and applied science, for example, in the design of distributed sensing systems based on wireless coupled oscillators, in network identification and control, as well as in the interpretation of neuroscientific and other dynamical data
    corecore