1,556 research outputs found

    Scheduling in assembly type job-shops

    Get PDF
    Assembly type job-shop scheduling is a generalization of the job-shop scheduling problem to include assembly operations. In the assembly type job-shops scheduling problem, there are n jobs which are to be processed on in workstations and each job has a due date. Each job visits one or more workstations in a predetermined route. The primary difference between this new problem and the classical job-shop problem is that two or more jobs can merge to foul\u27 a new job at a specified workstation, that is job convergence is permitted. This feature cannot be modeled by existing job-shop techniques. In this dissertation, we develop scheduling procedures for the assembly type job-shop with the objective of minimizing total weighted tardiness. Three types of workstations are modeled: single machine, parallel machine, and batch machine. We label this new scheduling procedure as SB. The SB procedure is heuristic in nature and is derived from the shifting bottleneck concept. SB decomposes the assembly type job-shop scheduling problem into several workstation scheduling sub-problems. Various types of techniques are used in developing the scheduling heuristics for these sub-problems including the greedy method, beam search, critical path analysis, local search, and dynamic programming. The performance of SB is validated on a set of test problems and compared with priority rules that are normally used in practice. The results show that SB outperforms the priority rules by an average of 19% - 36% for the test problems. SB is extended to solve scheduling problems with other objectives including minimizing the maximum completion time, minimizing weighted flow time and minimizing maximum weighted lateness. Comparisons with the test problems, indicate that SB outperforms the priority rules for these objectives as well. The SB procedure and its accompanying logic is programmed into an object oriented scheduling system labeled as LEKIN. The LEKIN program includes a standard library of scheduling rules and hence can be used as a platform for the development of new scheduling heuristics. In industrial applications LEKIN allows schedulers to obtain effective machine schedules rapidly. The results from this research allow us to increase shop utilization, improve customer satisfaction, and lower work-in-process inventory without a major capital investment

    Iterated-greedy-based algorithms with beam search initialization for the permutation flowshop to minimize total tardiness

    Get PDF
    The permutation flow shop scheduling problem is one of the most studied operations research related problems. Literally, hundreds of exact and approximate algorithms have been proposed to optimise several objective functions. In this paper we address the total tardiness criterion, which is aimed towards the satisfaction of customers in a make-to-order scenario. Although several approximate algorithms have been proposed for this problem in the literature, recent contributions for related problems suggest that there is room for improving the current available algorithms. Thus, our contribution is twofold: First, we propose a fast beam-search-based constructive heuristic that estimates the quality of partial sequences without a complete evaluation of their objective function. Second, using this constructive heuristic as initial solution, eight variations of an iterated-greedy-based algorithm are proposed. A comprehensive computational evaluation is performed to establish the efficiency of our proposals against the existing heuristics and metaheuristics for the problem.Ministerio de Ciencia e Innovación DPI2013-44461-PMinisterio de Ciencia e Innovación DPI2016-80750-

    A linear programming-based method for job shop scheduling

    Get PDF
    We present a decomposition heuristic for a large class of job shop scheduling problems. This heuristic utilizes information from the linear programming formulation of the associated optimal timing problem to solve subproblems, can be used for any objective function whose associated optimal timing problem can be expressed as a linear program (LP), and is particularly effective for objectives that include a component that is a function of individual operation completion times. Using the proposed heuristic framework, we address job shop scheduling problems with a variety of objectives where intermediate holding costs need to be explicitly considered. In computational testing, we demonstrate the performance of our proposed solution approach

    A hybrid shifting bottleneck-tabu search heuristic for the job shop total weighted tardiness problem

    Get PDF
    In this paper, we study the job shop scheduling problem with the objective of minimizing the total weighted tardiness. We propose a hybrid shifting bottleneck - tabu search (SB-TS) algorithm by replacing the reoptimization step in the shifting bottleneck (SB) algorithm by a tabu search (TS). In terms of the shifting bottleneck heuristic, the proposed tabu search optimizes the total weighted tardiness for partial schedules in which some machines are currently assumed to have infinite capacity. In the context of tabu search, the shifting bottleneck heuristic features a long-term memory which helps to diversify the local search. We exploit this synergy to develop a state-of-the-art algorithm for the job shop total weighted tardiness problem (JS-TWT). The computational effectiveness of the algorithm is demonstrated on standard benchmark instances from the literature
    corecore