11,275 research outputs found

    Feature fusion, feature selection and local n-ary patterns for object recognition and image classification

    Full text link
    University of Technology Sydney. Faculty of Engineering and Information Technology.Object recognition is one of the most fundamental topics in computer vision. During past years, it has been the interest for both academies working in computer science and professionals working in the information technology (IT) industry. The popularity of object recognition has been proven by its motivation of sophisticated theories in science and wide spread applications in the industry. Nowadays, with more powerful machine learning tools (both hardware and software) and the huge amount of information (data) readily available, higher expectations are imposed on object recognition. At its early stage in the 1990s, the task of object recognition can be as simple as to differentiate between object of interest and non-object of interest from a single still image. Currently, the task of object recognition may as well includes the segmentation and labeling of different image regions (i.e., to assign each segmented image region a meaningful label based on objects appear in those regions), and then using computer programs to infer the scene of the overall image based on those segmented regions. The original two-class classification problem is now getting more complex as it now evolves toward a multi-class classification problem. In this thesis, contributions on object recognition are made in two aspects. These are, improvements using feature fusion and improvements using feature selection. Three examples are given in this thesis to illustrate three different feature fusion methods, the descriptor concatenation (the low-level fusion), the confidence value escalation (the mid-level fusion) and the coarse-to-fine framework (the high-level fusion). Two examples are provided for feature selection to demonstrate its ideas, those are, optimal descriptor selection and improved classifier selection. Feature extraction plays a key role in object recognition because it is the first and also the most important step. If we consider the overall object recognition process, machine learning tools are to serve the purpose of finding distinctive features from the visual data. Given distinctive features, object recognition is readily available (e.g., a simple threshold function can be used to classify feature descriptors). The proposal of Local N-ary Pattern (LNP) texture features contributes to both feature extraction and texture classification. The distinctive LNP feature generalizes the texture feature extraction process and improves texture classification. Concretely, the local binary pattern (LBP) is the special case of LNP with n = 2 and the texture spectrum is the special case of LNP with n = 3. The proposed LNP representation has been proven to outperform the popular LBP and one of the LBP’s most successful extension - local ternary pattern (LTP) for texture classification

    Generalized local N-ary patterns for texture classification

    Full text link
    Local Binary Pattern (LBP) has been well recognised and widely used in various texture analysis applications of computer vision and image processing. It integrates properties of texture structural and statistical texture analysis. LBP is invariant to monotonic gray-scale variations and has also extensions to rotation invariant texture analysis. In recent years, various improvements have been achieved based on LBP. One of extensive developments was replacing binary representation with ternary representation and proposed Local Ternary Pattern (LTP). This paper further generalises the local pattern representation by formulating it as a generalised weight problem of Bachet de Meziriac and proposes Local N-ary Pattern (LNP). The encouraging performance is achieved based on three benchmark datasets when compared with its predecessors. © 2013 IEEE

    Parcellation of Visual Cortex on high-resolution histological Brain Sections using Convolutional Neural Networks

    Full text link
    Microscopic analysis of histological sections is considered the "gold standard" to verify structural parcellations in the human brain. Its high resolution allows the study of laminar and columnar patterns of cell distributions, which build an important basis for the simulation of cortical areas and networks. However, such cytoarchitectonic mapping is a semiautomatic, time consuming process that does not scale with high throughput imaging. We present an automatic approach for parcellating histological sections at 2um resolution. It is based on a convolutional neural network that combines topological information from probabilistic atlases with the texture features learned from high-resolution cell-body stained images. The model is applied to visual areas and trained on a sparse set of partial annotations. We show how predictions are transferable to new brains and spatially consistent across sections.Comment: Accepted for oral presentation at International Symposium of Biomedical Imaging (ISBI) 201

    Dynamic Steerable Blocks in Deep Residual Networks

    Get PDF
    Filters in convolutional networks are typically parameterized in a pixel basis, that does not take prior knowledge about the visual world into account. We investigate the generalized notion of frames designed with image properties in mind, as alternatives to this parametrization. We show that frame-based ResNets and Densenets can improve performance on Cifar-10+ consistently, while having additional pleasant properties like steerability. By exploiting these transformation properties explicitly, we arrive at dynamic steerable blocks. They are an extension of residual blocks, that are able to seamlessly transform filters under pre-defined transformations, conditioned on the input at training and inference time. Dynamic steerable blocks learn the degree of invariance from data and locally adapt filters, allowing them to apply a different geometrical variant of the same filter to each location of the feature map. When evaluated on the Berkeley Segmentation contour detection dataset, our approach outperforms all competing approaches that do not utilize pre-training. Our results highlight the benefits of image-based regularization to deep networks

    Grounding semantics in robots for Visual Question Answering

    Get PDF
    In this thesis I describe an operational implementation of an object detection and description system that incorporates in an end-to-end Visual Question Answering system and evaluated it on two visual question answering datasets for compositional language and elementary visual reasoning
    corecore