5 research outputs found

    Local block multilayer sparse extreme learning machine for effective feature extraction and classification of hyperspectral images.

    Get PDF
    Although extreme learning machines (ELM) have been successfully applied for the classification of hyperspectral images (HSIs), they still suffer from three main drawbacks. These include: 1) ineffective feature extraction (FE) in HSIs due to a single hidden layer neuron network used; 2) ill-posed problems caused by the random input weights and biases; and 3) lack of spatial information for HSIs classification. To tackle the first problem, we construct a multilayer ELM for effective FE from HSIs. The sparse representation is adopted with the multilayer ELM to tackle the ill-posed problem of ELM, which can be solved by the alternative direction method of multipliers. This has resulted in the proposed multilayer sparse ELM (MSELM) model. Considering that the neighboring pixels are more likely from the same class, a local block extension is introduced for MSELM to extract the local spatial information, leading to the local block MSELM (LBMSELM). The loopy belief propagation is also applied to the proposed MSELM and LBMSELM approaches to further utilize the rich spectral and spatial information for improving the classification. Experimental results show that the proposed methods have outperformed the ELM and other state-of-the-art approaches

    Underwater Aerial Vehicle Networks Based Image Analysis By Deep Learning Architecture Integrated With 5G System

    Get PDF
    With its astonishing ability to learn representation from data, deep neural networks (DNNs) have made efficient advances in the processing of pictures, time series, spoken language, audio, video, and many other types of data.In an effort to compile the volume of information generated in remote sensing field's subfields, surveys and literature revisions explicitly concerning DNNs methods applications are carried out Aerial sensing research has recently been dominated by applications based on Unmanned Aerial Vehicles (UAVs).There hasn't yet been a literature review that integrates the "deep learning" and "UAV remote sensing" thematics.This research propose novel technique in underwater aerial vehicle networks based image analysis by feature extraction and classification utilizing DL methods. here UAV based images through on 5G module is collected and this image has been processed for noise removal, smoothening and normalization. The processed image features has been extracted using multilayer extreme learning based convolutional neural networks. Then extracted deep features has been classified utilizingrecursive elimination based radial basis function networks. The experimental analysis is carried out based on numerous UAV image dataset in terms of accuracy, precision, recall, F-measure, RMSE and MAP.Proposed method attained accuracy of 96%, precision of 94%, recall of 85%, F- measure of 72%, RMSE of 48%, MAP of 41%

    Locality Regularized Robust-PCRC: A Novel Simultaneous Feature Extraction and Classification Framework for Hyperspectral Images

    Get PDF
    Despite the successful applications of probabilistic collaborative representation classification (PCRC) in pattern classification, it still suffers from two challenges when being applied on hyperspectral images (HSIs) classification: 1) ineffective feature extraction in HSIs under noisy situation; and 2) lack of prior information for HSIs classification. To tackle the first problem existed in PCRC, we impose the sparse representation to PCRC, i.e., to replace the 2-norm with 1-norm for effective feature extraction under noisy condition. In order to utilize the prior information in HSIs, we first introduce the Euclidean distance (ED) between the training samples and the testing samples for the PCRC to improve the performance of PCRC. Then, we bring the coordinate information (CI) of the HSIs into the proposed model, which finally leads to the proposed locality regularized robust PCRC (LRR-PCRC). Experimental results show the proposed LRR-PCRC outperformed PCRC and other state-of-the-art pattern recognition and machine learning algorithms
    corecore