101,340 research outputs found

    Statistical analysis of articulation points in configuration model networks

    Full text link
    An articulation point (AP) in a network is a node whose deletion would split the network component on which it resides into two or more components. APs are vulnerable spots that play an important role in network collapse processes, which may result from node failures, attacks or epidemics. Therefore, the abundance and properties of APs affect the resilience of the network to these collapse scenarios. We present analytical results for the statistical properties of APs in configuration model networks. In order to quantify their abundance, we calculate the probability P(iAP)P(i \in {\rm AP}), that a random node, i, in a configuration model network with P(K=k), is an AP. We also obtain the conditional probability P(iAPk)P(i \in {\rm AP}|k) that a random node of degree k is an AP, and find that high degree nodes are more likely to be APs than low degree nodes. Using Bayes' theorem, we obtain the conditional degree distribution, P(K=kAP)P(K=k|{\rm AP}), over the set of APs and compare it to P(K=k). We propose a new centrality measure based on APs: each node can be characterized by its articulation rank, r, which is the number of components that would be added to the network upon deletion of that node. For nodes which are not APs the articulation rank is r=0r=0, while for APs r1r \ge 1. We obtain a closed form expression for the distribution of articulation ranks, P(R=r). Configuration model networks often exhibit a coexistence between a giant component and finite components. To examine the distinct properties of APs on the giant and on the finite components, we calculate the probabilities presented above separately for the giant and the finite components. We apply these results to ensembles of configuration model networks with a Poisson, exponential and power-law degree distributions. The implications of these results are discussed in the context of common attack scenarios and network dismantling processes.Comment: 53 pages, 16 figures. arXiv admin note: text overlap with arXiv:1804.0333

    Optimally fast incremental Manhattan plane embedding and planar tight span construction

    Full text link
    We describe a data structure, a rectangular complex, that can be used to represent hyperconvex metric spaces that have the same topology (although not necessarily the same distance function) as subsets of the plane. We show how to use this data structure to construct the tight span of a metric space given as an n x n distance matrix, when the tight span is homeomorphic to a subset of the plane, in time O(n^2), and to add a single point to a planar tight span in time O(n). As an application of this construction, we show how to test whether a given finite metric space embeds isometrically into the Manhattan plane in time O(n^2), and add a single point to the space and re-test whether it has such an embedding in time O(n).Comment: 39 pages, 15 figure

    DIMAL: Deep Isometric Manifold Learning Using Sparse Geodesic Sampling

    Full text link
    This paper explores a fully unsupervised deep learning approach for computing distance-preserving maps that generate low-dimensional embeddings for a certain class of manifolds. We use the Siamese configuration to train a neural network to solve the problem of least squares multidimensional scaling for generating maps that approximately preserve geodesic distances. By training with only a few landmarks, we show a significantly improved local and nonlocal generalization of the isometric mapping as compared to analogous non-parametric counterparts. Importantly, the combination of a deep-learning framework with a multidimensional scaling objective enables a numerical analysis of network architectures to aid in understanding their representation power. This provides a geometric perspective to the generalizability of deep learning.Comment: 10 pages, 11 Figure

    A Network Topology Approach to Bot Classification

    Full text link
    Automated social agents, or bots, are increasingly becoming a problem on social media platforms. There is a growing body of literature and multiple tools to aid in the detection of such agents on online social networking platforms. We propose that the social network topology of a user would be sufficient to determine whether the user is a automated agent or a human. To test this, we use a publicly available dataset containing users on Twitter labelled as either automated social agent or human. Using an unsupervised machine learning approach, we obtain a detection accuracy rate of 70%

    Beyond knowledge brokerage: an exploratory study of innovation intermediaries in an evolving smallholder agricultural system in Kenya

    Get PDF
    The recognition that innovation occurs in networks of heterogeneous actors and requires broad systemic support beyond knowledge brokering has resulted in a changing landscape of the intermediary domain in an increasingly market-driven agricultural sector in developing countries. This paper presents findings of an explorative case study that looked at 22 organisations identified as fulfilling an intermediary role in the Kenyan agricultural sector. The results show that these organisations fulfill functions that are not limited to distribution of knowledge and putting it into use. The functions also include fostering integration and interaction among the diverse actors engaged in innovation networks and working on technological, organisational and institutional innovation. Further, the study identified various organisational arrangements of innovation intermediaries with some organisations fulfilling a specialised innovation brokering role, even as other intermediaries take on brokering as a side activity, while still substantively contributing to the innovation process. Based on these findings we identify a typology of 4 innovation intermediation arrangements, including technology brokers, systemic brokers, enterprise development support and input access support. The results indicate that innovation brokering is a pervasive task in supporting innovation and will require policy support to embed it in innovation support arrangements. The paper is not normative about these arrangements

    Robustness: a New Form of Heredity Motivated by Dynamic Networks

    Full text link
    We investigate a special case of hereditary property in graphs, referred to as {\em robustness}. A property (or structure) is called robust in a graph GG if it is inherited by all the connected spanning subgraphs of GG. We motivate this definition using two different settings of dynamic networks. The first corresponds to networks of low dynamicity, where some links may be permanently removed so long as the network remains connected. The second corresponds to highly-dynamic networks, where communication links appear and disappear arbitrarily often, subject only to the requirement that the entities are temporally connected in a recurrent fashion ({\it i.e.} they can always reach each other through temporal paths). Each context induces a different interpretation of the notion of robustness. We start by motivating the definition and discussing the two interpretations, after what we consider the notion independently from its interpretation, taking as our focus the robustness of {\em maximal independent sets} (MIS). A graph may or may not admit a robust MIS. We characterize the set of graphs \forallMIS in which {\em all} MISs are robust. Then, we turn our attention to the graphs that {\em admit} a robust MIS (\existsMIS). This class has a more complex structure; we give a partial characterization in terms of elementary graph properties, then a complete characterization by means of a (polynomial time) decision algorithm that accepts if and only if a robust MIS exists. This algorithm can be adapted to construct such a solution if one exists
    corecore