5,134 research outputs found

    Local, Smooth, and Consistent Jacobi Set Simplification

    Full text link
    The relation between two Morse functions defined on a common domain can be studied in terms of their Jacobi set. The Jacobi set contains points in the domain where the gradients of the functions are aligned. Both the Jacobi set itself as well as the segmentation of the domain it induces have shown to be useful in various applications. Unfortunately, in practice functions often contain noise and discretization artifacts causing their Jacobi set to become unmanageably large and complex. While there exist techniques to simplify Jacobi sets, these are unsuitable for most applications as they lack fine-grained control over the process and heavily restrict the type of simplifications possible. In this paper, we introduce a new framework that generalizes critical point cancellations in scalar functions to Jacobi sets in two dimensions. We focus on simplifications that can be realized by smooth approximations of the corresponding functions and show how this implies simultaneously simplifying contiguous subsets of the Jacobi set. These extended cancellations form the atomic operations in our framework, and we introduce an algorithm to successively cancel subsets of the Jacobi set with minimal modifications according to some user-defined metric. We prove that the algorithm is correct and terminates only once no more local, smooth and consistent simplifications are possible. We disprove a previous claim on the minimal Jacobi set for manifolds with arbitrary genus and show that for simply connected domains, our algorithm reduces a given Jacobi set to its simplest configuration.Comment: 24 pages, 19 figure

    Invariant distributions and collisionless equilibria

    Get PDF
    This paper discusses the possibility of constructing time-independent solutions to the collisionless Boltzmann equation which depend on quantities other than global isolating integrals such as energy and angular momentum. The key point is that, at least in principle, a self-consistent equilibrium can be constructed from any set of time-independent phase space building blocks which, when combined, generate the mass distribution associated with an assumed time-independent potential. This approach provides a way to justify Schwarzschild's (1979) method for the numerical construction of self-consistent equilibria with arbitrary time-independent potentials, generalising thereby an approach developed by Vandervoort (1984) for integrable potentials. As a simple illustration, Schwarzschild's method is reformulated to allow for a straightforward computation of equilibria which depend only on one or two global integrals and no other quantities, as is reasonable, e.g., for modeling axisymmetric configurations characterised by a nonintegrable potential.Comment: 14 pages, LaTeX, no macro

    A geometric description of the intermediate behaviour for spatially homogeneous models

    Full text link
    A new approach is suggested for the study of geometric symmetries in general relativity, leading to an invariant characterization of the evolutionary behaviour for a class of Spatially Homogeneous (SH) vacuum and orthogonal γ\gamma -law perfect fluid models. Exploiting the 1+3 orthonormal frame formalism, we express the kinematical quantities of a generic symmetry using expansion-normalized variables. In this way, a specific symmetry assumption lead to geometric constraints that are combined with the associated integrability conditions, coming from the existence of the symmetry and the induced expansion-normalized form of the Einstein's Field Equations (EFE), to give a close set of compatibility equations. By specializing to the case of a \emph{Kinematic Conformal Symmetry} (KCS), which is regarded as the direct generalization of the concept of self-similarity, we give the complete set of consistency equations for the whole SH dynamical state space. An interesting aspect of the analysis of the consistency equations is that, \emph{at least} for class A models which are Locally Rotationally Symmetric or lying within the invariant subset satisfying Nαα=0N_{\alpha}^{\alpha}=0 , a proper KCS \emph{always exists} and reduces to a self-similarity of the first or second kind at the asymptotic regimes, providing a way for the ``geometrization'' of the intermediate epoch of SH models.Comment: Latex, 15 pages, no figures (uses iopart style/class files); added one reference and minor corrections; (v3) improved and extended discussion; minor corrections and several new references are added; to appear in Class. Quantum Gra

    A viscosity framework for computing Pogorelov solutions of the Monge-Ampere equation

    Full text link
    We consider the Monge-Kantorovich optimal transportation problem between two measures, one of which is a weighted sum of Diracs. This problem is traditionally solved using expensive geometric methods. It can also be reformulated as an elliptic partial differential equation known as the Monge-Ampere equation. However, existing numerical methods for this non-linear PDE require the measures to have finite density. We introduce a new formulation that couples the viscosity and Aleksandrov solution definitions and show that it is equivalent to the original problem. Moreover, we describe a local reformulation of the subgradient measure at the Diracs, which makes use of one-sided directional derivatives. This leads to a consistent, monotone discretisation of the equation. Computational results demonstrate the correctness of this scheme when methods designed for conventional viscosity solutions fail

    Equal charge black holes and seven dimensional gauged supergravity

    Full text link
    We present various supergravity black holes of different dimensions with some U(1) charges set equal in a simple, common form. Black hole solutions of seven dimensional U(1)^2 gauged supergravity with three independent angular momenta and two equal U(1) charges are obtained. We investigate the thermodynamics and the BPS limit of this solution, and find that there are rotating supersymmetric black holes without naked closed timelike curves. There are also supersymmetric topological soliton solutions without naked closed timelike curves that have a smooth geometry.Comment: 24 pages; v2, v3: minor change

    An atlas for tridiagonal isospectral manifolds

    Get PDF
    Let TΛ{\cal T}_\Lambda be the compact manifold of real symmetric tridiagonal matrices conjugate to a given diagonal matrix Λ\Lambda with simple spectrum. We introduce {\it bidiagonal coordinates}, charts defined on open dense domains forming an explicit atlas for TΛ{\cal T}_\Lambda. In contrast to the standard inverse variables, consisting of eigenvalues and norming constants, every matrix in TΛ{\cal T}_\Lambda now lies in the interior of some chart domain. We provide examples of the convenience of these new coordinates for the study of asymptotics of isospectral dynamics, both for continuous and discrete time.Comment: Fixed typos; 16 pages, 3 figure

    The effective conductivity of arrays of squares: large random unit cells and extreme contrast ratios

    Full text link
    An integral equation based scheme is presented for the fast and accurate computation of effective conductivities of two-component checkerboard-like composites with complicated unit cells at very high contrast ratios. The scheme extends recent work on multi-component checkerboards at medium contrast ratios. General improvement include the simplification of a long-range preconditioner, the use of a banded solver, and a more efficient placement of quadrature points. This, together with a reduction in the number of unknowns, allows for a substantial increase in achievable accuracy as well as in tractable system size. Results, accurate to at least nine digits, are obtained for random checkerboards with over a million squares in the unit cell at contrast ratio 10^6. Furthermore, the scheme is flexible enough to handle complex valued conductivities and, using a homotopy method, purely negative contrast ratios. Examples of the accurate computation of resonant spectra are given.Comment: 28 pages, 11 figures, submitted to J. Comput. Phy
    corecore