5,015 research outputs found

    Load Forecasting Based Distribution System Network Reconfiguration-A Distributed Data-Driven Approach

    Full text link
    In this paper, a short-term load forecasting approach based network reconfiguration is proposed in a parallel manner. Specifically, a support vector regression (SVR) based short-term load forecasting approach is designed to provide an accurate load prediction and benefit the network reconfiguration. Because of the nonconvexity of the three-phase balanced optimal power flow, a second-order cone program (SOCP) based approach is used to relax the optimal power flow problem. Then, the alternating direction method of multipliers (ADMM) is used to compute the optimal power flow in distributed manner. Considering the limited number of the switches and the increasing computation capability, the proposed network reconfiguration is solved in a parallel way. The numerical results demonstrate the feasible and effectiveness of the proposed approach.Comment: 5 pages, preprint for Asilomar Conference on Signals, Systems, and Computers 201

    A Survey on Deep Learning Role in Distribution Automation System : A New Collaborative Learning-to-Learning (L2L) Concept

    Get PDF
    This paper focuses on a powerful and comprehensive overview of Deep Learning (DL) techniques on Distribution Automation System (DAS) applications to provide a complete viewpoint of modern power systems. DAS is a crucial approach to increasing the reliability, quality, and management of distribution networks. Due to the importance of development and sustainable security of DAS, the use of DL data-driven technology has grown significantly. DL techniques have blossomed rapidly, and have been widely applied in several fields of distribution systems. DL techniques are suitable for dynamic, decision-making, and uncertain environments such as DAS. This survey has provided a comprehensive review of the existing research into DL techniques on DAS applications, including fault detection and classification, load and energy forecasting, demand response, energy market forecasting, cyber security, network reconfiguration, and voltage control. Comparative results based on evaluation criteria are also addressed in this manuscript. According to the discussion and results of studies, the use and development of hybrid methods of DL with other methods to enhance and optimize the configuration of the techniques are highlighted. In all matters, hybrid structures accomplish better than single methods as hybrid approaches hold the benefit of several methods to construct a precise performance. Due to this, a new smart technique called Learning-to-learning (L2L) based DL is proposed that can enhance and improve the efficiency, reliability, and security of DAS. The proposed model follows several stages that link different DL algorithms to solve modern power system problems. To show the effectiveness and merit of the L2L based on the proposed framework, it has been tested on a modified reconfigurable IEEE 32 test system. This method has been implemented on several DAS applications that the results prove the decline of mean square errors by approximately 12% compared to conventional LSTM and GRU methods in terms of prediction fields.©2022 Authors. Published by IEEE. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/fi=vertaisarvioitu|en=peerReviewed

    Attributes of Big Data Analytics for Data-Driven Decision Making in Cyber-Physical Power Systems

    Get PDF
    Big data analytics is a virtually new term in power system terminology. This concept delves into the way a massive volume of data is acquired, processed, analyzed to extract insight from available data. In particular, big data analytics alludes to applications of artificial intelligence, machine learning techniques, data mining techniques, time-series forecasting methods. Decision-makers in power systems have been long plagued by incapability and weakness of classical methods in dealing with large-scale real practical cases due to the existence of thousands or millions of variables, being time-consuming, the requirement of a high computation burden, divergence of results, unjustifiable errors, and poor accuracy of the model. Big data analytics is an ongoing topic, which pinpoints how to extract insights from these large data sets. The extant article has enumerated the applications of big data analytics in future power systems through several layers from grid-scale to local-scale. Big data analytics has many applications in the areas of smart grid implementation, electricity markets, execution of collaborative operation schemes, enhancement of microgrid operation autonomy, management of electric vehicle operations in smart grids, active distribution network control, district hub system management, multi-agent energy systems, electricity theft detection, stability and security assessment by PMUs, and better exploitation of renewable energy sources. The employment of big data analytics entails some prerequisites, such as the proliferation of IoT-enabled devices, easily-accessible cloud space, blockchain, etc. This paper has comprehensively conducted an extensive review of the applications of big data analytics along with the prevailing challenges and solutions

    A smart distribution toolbox for distribution system planning

    Get PDF
    Paper 1623The distribution system planner should be able to coordinate smart grid solutions in order to find cost effective expansions plans. These plans should be able to deal with new added system uncertainties from renewable production and consumers while guaranteeing power quality and availability of supply. This paper proposes a structure for distribution systems planning oriented to help the planner in deciding how to make use of smart solutions for achieving the described task. Here, the concept of a system planning toolbox is introduced and supported with a review of relevant works implementing smart solutions. These are colligated in a way that the system planner can foresee what to expect with their combined implementation. Future developments in this subject should attempt to theorize a practical algorithm in an optimization and decision making context.postprin

    A Novel Feeder-level Microgrid Unit Commitment Algorithm Considering Cold-load Pickup, Phase Balancing, and Reconfiguration

    Full text link
    This paper presents a novel 2-stage microgrid unit commitment (Microgrid-UC) algorithm considering cold-load pickup (CLPU) effects, three-phase load balancing requirements, and feasible reconfiguration options. Microgrid-UC schedules the operation of switches, generators, battery energy storage systems, and demand response resources to supply 3-phase unbalanced loads in an islanded microgrid for multiple days. A performance-based CLPU model is developed to estimate additional energy needs of CLPU so that CLPU can be formulated into the traditional 2-stage UC scheduling process. A per-phase demand response budget term is added to the 1st stage UC objective function to meet 3-phase load unbalance limits. To reduce computational complexity in the 1st stage UC, we replace the spanning tree method with a feasible reconfiguration topology list method. The proposed algorithm is developed on a modified IEEE 123-bus system and tested on the real-time simulation testbed using actual load and PV data. Simulation results show that Microgrid-UC successfully accounts for CLPU, phase imbalance, and feeder reconfiguration requirements.Comment: 10 pages, submitted to IEEE Transactions on Smart Gri

    A successor to ER P2/6 : existing issues and lessons from "Flexible Networks for a Low Carbon Future"

    Get PDF
    This note is concerned with a network's ability to meet demand for power. In other words, with 'security of supply' and, in particular, with standards or conventions that drive a distribution network planner’s decisions in respect of ensuring that demand will be met in future. It takes lessons from the “Flexible Networks” Low Carbon Networks Fund project in respect of ‘flexible’ network actions such as dynamic or real-time ratings, network reconfiguration and voltage regulation along with learning from network monitoring, not least to aid better forecasting of demand, and applies them in respect of possible development of a successor to the main standard that drives network investment to provide adequate reliability of supply to distribution connected demand, Engineering Recommendation (ER) P2/6, i.e. the 6th edition of ER P2. This note discusses a number of issues in respect of ER P2/6, its application by Distribution Network Operators (DNOs) and its interactions with other regulatory initiatives, not least the Interruption Incentive Scheme (IIS) and ‘load indices’
    • 

    corecore