5,927 research outputs found

    Load Management in Power Grids - Towards a Decision Support System for Portfolio Operators

    Get PDF
    Decentralized renewable energy sources become more and more common. This leads to stability problems in power grids. Conventional energy sources are easy to control. In contrast, wind and solar power are much more difficult to forecast. Forecasts are only possible short term and are more imprecise. Producers and consumers of energy can try to help reducing stability problems. Contributions towards a decision support system are proposed and recommend how to alter the behavior of producers and consumers. On the producer side centrally controlled heat and power plants are able to shift load in a virtual power plant. The plant operator offers a load curve based on forecasts. The centrally controlled heat and power plants help to mitigate the effect of revised forecasts. An incentive based control on the consumer side is also proposed. Smart appliances react to pricing information. They alter their execution window towards the cheapest time slot, if possible. The exact behavior of appliances in the expected field experiment is still partially unknown. It is necessary to simulate the behavior of these appliances and to train an artificial neural network. The artificial neural network allows computing the pricing signal leading to a desired load shift

    Threat Scenarios and Monitoring Requirements for Cyber-Physical Systems of Flexibility Markets

    Full text link
    The ongoing integration of renewable generation and distributed energy resources introduces new challenges to distribution network operation. Due to the increasing volatility and uncertainty, distribution system operators (DSOs) are seeking concepts to enable more active management and control. Flexibility markets (FMs) offer a platform for economically efficient trading of electricity flexibility between DSOs and other participants. The integration of cyber, physical and market domains of multiple participants makes FMs a system of cyber-physical systems (CPSs). While cross-domain integration sets the foundation for efficient deployment of flexibility, it introduces new physical and cyber vulnerabilities to participants. This work systematically formulates threat scenarios for the CPSs of FMs, revealing several remaining security challenges across all domains. Based on the threat scenarios, unresolved monitoring requirements for secure participation of DSOs in FMs are identified, providing the basis for future works that address these gaps with new technical concepts.Comment: Published in the proceedings of the 2022 IEEE PES Generation, Transmission and Distribution Conference and Exposition - Latin America (IEEE PES GTD Latin America

    Ubiquitous energy storage

    Get PDF
    This paper presents a vision of a future power system with "ubiquitous energy storage", where storage would be utilized at all levels of the electricity system. The growing requirement for storage is reviewed, driven by the expansion of distributed generation. The capabilities and existing applications of various storage technologies are presented, providing a useful review of the state of the art. Energy storage will have to be integrated with the power system and there are various ways in which this may be achieved. Some of these options are discussed, as are commercial and regulatory issues. In two case studies, the costs and benefits of some storage options are assessed. It is concluded that electrical storage is not cost effective but that thermal storage offers attractive opportunities

    Agent-based simulation of electricity markets: a literature review

    Get PDF
    Liberalisation, climate policy and promotion of renewable energy are challenges to players of the electricity sector in many countries. Policy makers have to consider issues like market power, bounded rationality of players and the appearance of fluctuating energy sources in order to provide adequate legislation. Furthermore the interactions between markets and environmental policy instruments become an issue of increasing importance. A promising approach for the scientific analysis of these developments is the field of agent-based simulation. The goal of this article is to provide an overview of the current work applying this methodology to the analysis of electricity markets. --

    The Next-Generation Retail Electricity Market in the Context of Distributed Energy Resources: Vision and Integrating Framework

    Get PDF
    The increasing adoption of distributed energy resources (DERs) and smart grid technologies (SGTs) by end-user retail customers is changing significantly both technical and economic operations in the distribution grid. The next-generation retail electricity market will promote decentralization, efficiency, and competitiveness by accommodating existing and new agents through new business models and transactive approaches in an advanced metering infrastructure (AMI). However, these changes will bring several technical challenges to be addressed in transmission and distribution systems. Considerable activities have been carried out worldwide to study the impacts of integrating DERs into the grid and in the wholesale electricity market. However, the big vision and framework of the next-generation retail market in the context of DERs is still unclear. This paper aims to present a brief review of the present retail electricity market, some recent developments, and a comprehensive vision of the next-generation retail electricity market by describing its expected characteristics, challenges, needs, and future research topics to be addressed. A framework of integrating retail and wholesale electricity markets is also presented and discussed. The proposed vision and framework particularly highlight the necessity of new business models and regulatory initiatives to establish decentralized markets for DERs at the retail level as well as advances in technology and infrastructure necessary to allow the widespread use of DERs in active and effective ways
    corecore