567 research outputs found

    Load Disaggregation Based on Aided Linear Integer Programming

    Get PDF
    Load disaggregation based on aided linear integer programming (ALIP) is proposed. We start with a conventional linear integer programming (IP) based disaggregation and enhance it in several ways. The enhancements include additional constraints, correction based on a state diagram, median filtering, and linear programming-based refinement. With the aid of these enhancements, the performance of IP-based disaggregation is significantly improved. The proposed ALIP system relies only on the instantaneous load samples instead of waveform signatures, and hence works well on low-frequency data. Experimental results show that the proposed ALIP system performs better than conventional IP-based load disaggregation

    Low-Power Appliance Monitoring Using Factorial Hidden Markov Models

    Get PDF
    To optimize the energy utilization, intelligent energy management solutions require appliance-specific consumption statistics. One can obtain such information by deploying smart power outlets on every device of interest, however it incurs extra hardware cost and installation complexity. Alternatively, a single sensor can be used to measure total electricity consumption and thereafter disaggregation algorithms can be applied to obtain appliance specific usage information. In such a case, it is quite challenging to discern low-power appliances in the presence of high-power loads. To improve the recognition of low-power appliance states, we propose a solution that makes use of circuit-level power measurements. We examine the use of a specialized variant of Hidden Markov Model (HMM) known as Factorial HMM (FHMM) to recognize appliance specific load patterns from the aggregated power measurements. Further, we demonstrate that feature concatenation can improve the disaggregation performance of the model allowing it to identify device states with an accuracy of 90% for binary and 80% for multi-state appliances. Through experimental evaluations, we show that our solution performs better than the traditional event based approach. In addition, we develop a prototype system that allows real-time monitoring of appliance states

    Non-Intrusive Load Disaggregation of Industrial Cooling Demand with LSTM Neural Network

    Get PDF
    As the telecommunication industry becomes more and more energy intensive, energy efficiency actions are crucial and urgent measures to achieve energy savings. The main contribution to the energy demand of buildings devoted to the operation of the telecommunication network is cooling. The main issue in order to assess the impact of cooling equipment energy consumption to support energy managers with awareness over the buildings energy outlook is the lack of monitoring devices providing disaggregated load measurements. This work proposes a Non-Intrusive Load Disaggregation (NILD) tool that exploits a literature-based decomposition with an innovative LSTM Neural Network-based decomposition algorithm to assess cooling demand. The proposed methodology has been employed to analyze a real-case dataset containing aggregated load profiles from around sixty telecommunication buildings, resulting in accurate, compliant, and meaningful outcomes

    A novel dual-decomposition method for non-convex mixed integer quadratically constrained quadratic problems

    Full text link
    In this paper, we propose the novel p-branch-and-bound method for solving two-stage stochastic programming problems whose deterministic equivalents are represented by non-convex mixed-integer quadratically constrained quadratic programming (MIQCQP) models. The precision of the solution generated by the p-branch-and-bound method can be arbitrarily adjusted by altering the value of the precision factor p. The proposed method combines two key techniques. The first one, named p-Lagrangian decomposition, generates a mixed-integer relaxation of a dual problem with a separable structure for a primal non-convex MIQCQP problem. The second one is a version of the classical dual decomposition approach that is applied to solve the Lagrangian dual problem and ensures that integrality and non-anticipativity conditions are met in the optimal solution. The p-branch-and-bound method's efficiency has been tested on randomly generated instances and demonstrated superior performance over commercial solver Gurobi. This paper also presents a comparative analysis of the p-branch-and-bound method efficiency considering two alternative solution methods for the dual problems as a subroutine. These are the proximal bundle method and Frank-Wolfe progressive hedging. The latter algorithm relies on the interpolation of linearisation steps similar to those taken in the Frank-Wolfe method as an inner loop in the classic progressive hedging.Comment: 19 pages, 5 table
    • …
    corecore